Схемы замещения трансформаторов при расчетах


Схемы замещения трансформаторов при расчетах

Часть 1

Замыкания на землю в линиях электропередачи 6-35 кВ
Особенности возникновения и приборы защиты

Процессы, протекающие в сетях 6-35 кВ при однофазных замыканиях на землю, и способы защиты от ОЗЗ – этой теме посвящено довольно большое количество публикаций в специализированной литературе.
Наш автор Алексей Иванович Шалин сегодня рассматривает различные виды повреждений, возникающих на воздушных и кабельных линиях электропередачи при однофазных замыканиях на землю, а также процессы, возникающие при этом в электрических сетях.

Как известно, характер процессов, протекающих в сети при однофазных замыканиях на землю (ОЗЗ), в большой степени зависит от режима заземления нейтрали. В настоящее время в России используются четыре способа заземления нейтрали в рассматриваемых сетях: изолированная, компенсированная, резистивно-заземленная и комбинированная

– с резистором и дугогасящим реактором в нейтрали.
Эксплуатируемые в российских сетях с изолированной и компенсированной нейтралью защиты далеки от совершенства. Требуется разработка новых, более совершенных защит от ОЗЗ.
Опыт работы показывает, что при сохранении традиционных способов заземления нейтрали существенного «прорыва» в этой области едва ли можно ожидать. Принципиально новые возможности появляются при заземлении нейтрали через резистор. При этом в некоторых случаях (при больших, порядка десятков ампер, емкостных токах сети) резистивное заземление совмещают с включением в нейтраль дугогасящего реактора LN (рис.1). Вид защиты от ОЗЗ безусловно должен выбираться с учетом режима заземления нейтрали. Желательно в процессе проектирования выбрать такую защиту, которую не придется заменять при дальнейшем развитии сети.

Устойчивым признаком поврежденного присоединения в соответствии с рис. 1 является протекание по нему активного тока заземляющего резистора RN.

ВИДЫ ПОВРЕЖДЕНИЙ ПРИ ОЗЗ


При ОЗЗ в резистивно-заземленных сетях возможны повреждения, которые с точки зрения защиты можно разделить на несколько основных категорий:

кратковременные пробои;

«металлические», бездуговые ОЗЗ;

ОЗЗ через большие переходные сопротивления;

дуговые ОЗЗ;

обрывы воздушных ЛЭП, не сопровождающиеся длительными ОЗЗ.

Кратковременные пробои

Большинству «устойчивых» ОЗЗ предшествуют кратковременные неустойчивые пробои изоляции длительностью от 1 до 10 мс, сопровождающиеся значительными по продолжительности бестоковыми паузами (от 1 до 17 минут). Время от первого кратковременного пробоя до возникновения устойчивого ОЗЗ составляет от 1 минуты до 10 суток и более.

Бездуговое ОЗЗ

Такое замыкание появляется при возникновении надежной гальванической связи поврежденной фазы с землей (например, с заземленным корпусом электроустановки). При этом напряжения и токи нулевой последовательности можно считать синусоидальными и максимальными по величине. С точки зрения защиты бездуговое ОЗЗ – самый простой режим функционирования.

ОЗЗ через большие переходные сопротивления

Связь фазы с землей через неметаллические предметы (например, через деревянные части конструкции, при падении провода на сухой грунт и т.д.) иногда приводит к ОЗЗ с весьма большим переходным сопротивлением. Так, в эксперименте, проведенном с участием автора, при падении провода ЛЭП 35 кВ на песок отмечалось переходное сопротивление, которое в течение нескольких секунд изменялось примерно от 7 до 5 кОм. В литературе указано, что в Польше нормируемая величина такого сопротивления составляет 13,5 кОм, в Канаде – 7,5 кОм. Такие большие величины переходных сопротивлений могут существенно усложнить требования к защитам воздушных ЛЭП от ОЗЗ, поскольку с ростом переходного сопротивления уменьшаются как напряжения U0, так и токи нулевой последовательности I0.

Дуговое замыкание

Наблюдается при пробоях и перекрытиях фазной изоляции. При этом весьма часто наблюдается «прерывистая» форма кривой тока в дуге. Такая дуга, как известно, называется перемежающейся. На рис. 2 приведены осциллограммы тока в месте ОЗЗ и тока в реле защиты поврежденной линии при замыкании на землю через дугу и наличии заземляющего резистора. Видно, что ток в реле защиты при ОЗЗ может на какое-то время прерываться и содержит большое количество высокочастотных составляющих.

В некоторых случаях в токе и напряжении нулевой последовательности могут возникать также субгармонические составляющие.
Дуга, возникающая при ОЗЗ, может иногда прерываться на значительное, превышающее несколько периодов промышленной частоты, время. В литературе приведен анализ зависимости продолжительности бестоковой паузы, связанной с медленным зарядом емкости поврежденной фазы после погасания дуги, от параметров сети. Показано, что введение заземляющего резистора существенно уменьшает продолжительность такой паузы, что положительно сказывается на поведении защиты от замыканий на землю.
Значительное содержание высокочастотных составляющих в токах нулевой последовательности как поврежденной, так и неповрежденных ЛЭП может привести к неселективной работе защиты. Во время некоторых проведенных экспериментов токи нулевой последовательности, например, неповрежденных ЛЭП в несколько раз превышали собственные емкостные токи при металлических ОЗЗ. Это объясняется тем, что высокочастотные составляющие в напряжении нулевой последовательности, которые, в частности, генерируются дугой, в значительной степени «усиливаются» в емкостных токах линий, так как емкостное сопротивление уменьшается пропорционально росту частоты. В результате токи в неповрежденных линиях могут существенно превысить емкостные токи, определенные при металлическом ОЗЗ, по которым ведется расчет уставок защиты.

ОБРЫВЫ ВОЗДУШНЫХ ЛЭП, НЕ СОПРОВОЖДАЮЩИЕСЯ

ДЛИТЕЛЬНЫМИ ОЗЗ

Иногда в сетях 6–35 кВ возникают повреждения, не приводящие к длительному протеканию тока нулевой последовательности, но как бы «смежные» с ОЗЗ, – например, обрыв шлейфа на воздушной ЛЭП. Если шлейф висит, не прикасаясь к опоре, то ток нулевой последовательности отсутствует и обычная защита от ОЗЗ не действует. При раскачивании ветром шлейф может кратковременно замыкаться на опору, что приведет к «клевкам» защиты, но её срабатывание обычно не происходит из-за кратковременности такого замыкания.

КОНСТРУКЦИИ ЛЭП И РЕЖИМЫ РАБОТЫ СЕТИ

Большое влияние на поведение защиты от ОЗЗ оказывает также схема сети, режимы её работы и конструктивное исполнение ЛЭП. Очевидно, что при ОЗЗ процессы по-разному протекают в сетях с воздушными или кабельными линиями.

ОЗЗ НА КАБЕЛЬНЫХ ЛИНИЯХ

ОЗЗ в кабелях с пластмассовой изоляцией при достаточно больших емкостных токах сети часто приводит к устойчивому горению дуги. При тех же условиях ОЗЗ в кабеле с бумажной изоляцией, пропитанной масляно-канифольной мастикой, обычно приводит к разложению масла и бурному выделению газов. Турбулентное движение газов в образовавшемся газовом пузыре приводит к погасанию дуги, последующее зажигание которой происходит лишь после «рассасывания» образовавшихся газов.
Можно предположить, что при разных значениях тока ОЗЗ и различных фазах развития процесса длительность горения дуги и продолжительность бестоковых пауз могут варьироваться. В связи с этим, например, переход в кабельных сетях от мгновенно действующих защит от ОЗЗ к защитам, имеющим выдержку времени, может привести к отказам в тех случаях, когда продолжительность горения дуги становится меньше выдержки времени защиты.

ОЗЗ НА ВОЗДУШНЫХ ЛИНИЯХ

Похожие проблемы могут возникнуть при перемежающейся дуге и в защите воздушных линий. При наличии существенных бестоковых пауз, характерных для перемежающейся дуги, защиты от ОЗЗ, имеющие стандартную схему обеспечения выдержки времени, могут отказать, поскольку во время бестоковой паузы они «сбрасывают» замер по времени, – реле (или блок) выдержки времени возвращаются в исходное состояние. Для бесперебойного функционирования защиты в рассматриваемом случае необходимо обеспечить «запоминание» на некоторое время факта запуска защиты. Если в течение установленного времени запоминания ток нулевой последовательности появится вновь, защита должна срабатывать.
Еще одной особенностью, выявленной при участии автора в сетях 35 кВ, является влияние при ОЗЗ цепей двухцепных воздушных ЛЭП друг на друга. Типовое подключение этих ВЛ (обозначенных как А, В, С) к сборным шинам подстанции показано на рис. 3.

В схеме в нейтраль 35 кВ каждого силового трансформатора включен заземляющий резистор R1, R2. Секционный выключатель обычно отключен. Между двумя цепями одной ВЛ, подключенными к разным секциям, существует связь через межцепные емкости. При ОЗЗ на одной из цепей напряжение нулевой последовательности возникает на обеих секциях сборных шин и токи нулевой последовательности протекают через линии, присоединенные как к левой секции сборных шин подстанции, так и к правой. Если не учесть эту особенность при разработке и проектировании защиты, то возможны неселективные отключения неповрежденных линий при ОЗЗ в сети.
В некоторых сетях 35 кВ воздушные ЛЭП для удобства эксплуатации выполнены без транспозиции фазных проводов. При этом возникает несимметрия фазных емкостей относительно земли, что приводит к смещению нейтрали сети, т.е. появлению напряжения и токов нулевой последовательности при отсутствии ОЗЗ. Установка в нейтрали заземляющего резистора уменьшает это напряжение, тем не менее, в защитах от ОЗЗ появляется дополнительный ток, который, по мнению автора, следует учитывать при расчете уставок.
Если в сетях 6–10 кВ, как правило, удается установить кабельные трансформаторы тока нулевой последовательности, имеющие малый небаланс в нормальном режиме, то в сети 35 кВ обычно для защиты от ОЗЗ приходится использовать фильтры из трех трансформаторов тока, небаланс которых может быть в некоторых случаях весьма велик. Если не учитывать его при расчете уставок, то возможны неселективные срабатывания.
Токи нулевой последовательности могут изменяться в процессе эксплуатации в силу следующих причин:

в результате отключения отдельных ЛЭП и перемычек в схеме, например, в процессе эксплуатации;

при включении ЛЭП, присоединенных к шинам подстанции или распределительного пункта, после ремонта. При этом могут существенно изменяться также и углы между током и напряжением нулевой последовательности в поврежденной линии;

в одной из северных энергосистем из-за бурного развития схемы электроснабжения и замены части воздушных ЛЭП на кабельные за несколько лет ток нулевой последовательности изменился в 3 раза – с 30 А на одной секции сборных шин подстанции до примерно 90 А. Естественно, при этом необходимо пересмотреть и уточнить уставки защит от ОЗЗ;

при наличии дугогасящего реактора, включенного параллельно заземляющему резистору, эксплуатационный персонал не всегда использует его автоподстройку, даже если она имеется. При этом возможны режимы существенной перекомпенсации, что резко затрудняет работу большинства известных защит от ОЗЗ.

На практике неоднократно наблюдались случаи срабатывания защит неповрежденных линий после отключения линии с ОЗЗ. Одной из возможных причин такого неселективного срабатывания является то, что трансформатор напряжения (ТН) в процессе ОЗЗ накапливает энергию, которой после отключения поврежденной линии начинает обмениваться с емкостями неповрежденных ЛЭП. При этом вектора и величины токов в этих линиях попадают в зону срабатывания защиты, в результате чего защита от ОЗЗ действует на отключение неселективно. Наличие заземляющего резистора помогает и в этом случае, поскольку накопленная в ТН энергия быстро выделяется в резисторе. Дополнительной мерой, позволяющей отстроиться от таких неселективных срабатываний, является введение выдержки времени на срабатывание защиты.

ЗАЩИТЫ ОТ ОЗЗ

Современные защиты на микропроцессорной базе далеко не всегда удается отнести к какому-то конкретному классу, поскольку в них обычно используется несколько алгоритмов. При рассмотрении таких защит уместно говорить о двух и более классах, к которым они принадлежат. Защиты на электромеханической базе или выполненные с использованием микросхем среднего уровня интеграции, как правило, поддаются такой классификации, хотя отсутствие в печати, а иногда и в инструкциях по эксплуатации подробной и достоверной информации затрудняет этот процесс.
Тем не менее попытаемся систематизировать то многообразие защит от ОЗЗ, которые в настоящее время эксплуатируются в энергосистемах России и могут быть использованы в резистивно-заземленных сетях.

Часть 2

ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6-35 кВ

Случаи неправильных действий защит

Следует отметить, что, несмотря на многолетний опыт эксплуатации направленных токовых защит нулевой последовательности от однофазных замыканий на землю в сетях 6–35 кВ, в России до сих пор отсутствуют методики расчета их уставок. Автору не известны также материалы, регламентирующие расчет уставок чувствительных импортных защит от ОЗЗ, представленных сегодня на российском рынке. Однако это отдельный вопрос, выходящий за рамки публикуемой статьи.
Мы же рассмотрим некоторые схемные особенности отечественных сетей, приводящие к неправильному действию защит от ОЗЗ.

ОЗЗ НА ПОДСТАНЦИИ


Как известно, обычно трансформаторы тока в сетях 6–10 кВ устанавливаются в фазах А и С. В фазе В трансформаторы тока не устанавливаются. Замыкание на землю сопровождается малыми токами, при которых защиты от междуфазных коротких замыканий (КЗ) не срабатывают, а должна подействовать защита от ОЗЗ. При двойных замыканиях на землю ток резко увеличивается и должна сработать защита от междуфазных КЗ.
В процессе работы на подстанциях одной из энергосистем (подстанции 2 и 3 на рис. 1) выяснилось (эксперимент проводил к.т.н. доцент А.И. Щеглов, НГТУ), что те токопроводы, которые на одной из подстанций считались принадлежащими фазе А, на другой подстанции обозначались как фаза В и т.д. Такой разнобой в наименованиях фаз, как показало проведенное обследование, не редкость на сетевых подстанциях 6–35 кВ.
На рис. 1 наименование сборных шин на подстанции 2 соответствует аналогичному на головной подстанции 1, а на подстанции 3 токопровод, обозначенный как фаза А, соответствует фазе С на головной подстанции, токопровод В соответствует фазе А, а фаза С на подстанции 3 соответствует фазе А на подстанции 1. При этом чередование фаз на подстанции 3 сохраняется, все векторные диаграммы при принятом наименовании фаз соответствуют стандартным, потребители не ощущают «перепутывания» фаз. Связи между подстанциями 2 и 3 по сети, кроме указанных на рисунке, отсутствуют.
При возникновении однофазного замыкания на землю в фазе В на подстанции 2 напряжение в двух других фазах повышается. В процессе проводимого эксперимента произошел пробой изоляции на землю на одном из присоединений подстанции 3. На подстанции 3 соответствующая фаза была обозначена как фаза В и в ней не был установлен трансформатор тока. В действительности повредившаяся фаза соответствует фазе А на головной подстанции. В результате двойное замыкание в фазе В на обеих подстанциях, являясь, по сути, междуфазным КЗ, не привело к срабатыванию защит от междуфазных КЗ на подстанциях, поскольку фазы В (в действительности – разные фазы) не обработаны трансформаторами тока. Сработала защита от междуфазных КЗ на питающей ЛЭП (ЛЭП-4 на рис. 1). Если на подстанции 2 фазы не перепутаны, то она останется не отключенной вместе с ОЗЗ.


Такое действие защиты, кроме увеличения количества отключенных присоединений, может сильно осложнить последующий поиск поврежденного участка, поскольку на ЛЭП-4 – единственной, где сработала защита, повреждение отсутствует. На поврежденных же участках, где защита от ОЗЗ отстроена по времени от времени срабатывания защиты от КЗ, ни одна защита не сработала.
Очевидно, что из сложившегося положения можно выйти, если привести обозначения одинаковых фаз на разных подстанциях в соответствие друг с другом. Если же это по какой-то причине затруднительно, то можно дополнительно установить на подстанциях трансформаторы тока в фазе В и защиту от междуфазных КЗ в трехфазном исполнении.

Дешевле установить на подстанциях надежную защиту отходящих присоединений от ОЗЗ, способную четко функционировать при уровнях токов, соответствующих междуфазным КЗ.
В некоторой степени спасти ситуацию может установка на вводах в подстанцию защиты от ОЗЗ, согласованной по времени действия с защитой от междуфазных КЗ (выдержка времени защиты от ОЗЗ должна быть меньше, чем у защиты от КЗ). При этом отключение происходит на той подстанции, где произошло повреждение, что существенно облегчает последующую ликвидацию аварии и разбор ее причин.

ОЗЗ НА КАБЕЛЬНОЙ РАЗДЕЛКЕ

Непростая ситуация возникает при ОЗЗ на кабельной разделке, до места установки трансформатора тока нулевой последовательности (рис. 2). При этом повреждении защита рассматриваемого присоединения от ОЗЗ, выполненная на реле КА, не срабатывает, т.к. ток нулевой последовательности протекает от сборных шин до места замыкания, не попадая в кабельный трансформатор тока.
Составляющая тока нулевой последовательности 3I0 , которая протекает от потребителя к месту ОЗЗ, обычно бывает незначительной и не приводит к срабатыванию защиты (защита от нее отстраивается). Не срабатывает также защита от КЗ (по крайней мере, до того момента, когда ОЗЗ переходит в междуфазное КЗ). Известны случаи, когда ОЗЗ на кабельной разделке, сопровождающееся открытой дугой, приводило к возгоранию разлитого в ячейке масла или его паров и дальнейшему пожару. В результате возникала серьезная авария. В какой-то степени помочь выйти из затруднительного положения в данном случае может либо дуговая защита (она пока установлена далеко не на всех объектах), либо защита от ОЗЗ, установленная на вводах на подстанцию (такая защита в рассматриваемом случае отключит всю секцию, от которой питается поврежденная линия). Но такая защита на вводах в настоящее время также обычно не предусматривается.

ОЗЗ В «ПУЧКАХ КАБЕЛЕЙ». ОБЩИЕ ВОПРОСЫ


Интересные случаи неправильной работы защиты были обнаружены в «пучках кабелей», т.е. в тех случаях, когда питание потребителям выдается через несколько параллельно включенных кабелей. Известно, что в этом случае на каждом кабеле устанавливается свой трансформатор тока нулевой последовательности (ТТНП). Вторичные обмотки этих ТТНП, например, могут быть включены либо параллельно, либо последовательно, после чего подключается токовое реле (например, РТЗ-51). В литературе, со ссылкой на эксперименты, проведенные в 30-е годы прошлого века в ТЭП, рекомендуется, как правило, включать вторичные обмотки ТТНП последовательно.
Увеличение количества ТТНП в группе ведет к росту минимального тока срабатывания защиты, который можно получить. Например, минимальный ток срабатывания защиты, использующей один ТТНП типа ТЗРЛ и реле РТЗ-51, равен 0,69 А. Если два ТЗРЛ по цепям вторичных обмоток включены параллельно, минимальный ток срабатывания составляет 0,97 А, а при последовательном соединении обмоток – 1,25 А. При наличии трех кабелей и соответственно трех ТТНП, вторичные обмотки которых соединены параллельно, минимальный ток срабатывания равен 1,19 А, а при последовательном соединении обмоток – 1,95 А.
Высокая точность приведенных результатов (до третьего знака) вызывает сомнения. Эксперименты, проведенные автором статьи совместно с инженером А.М. Хабаровым и доцентом А.И. Щегловым с трансформаторами тока типа ТЗЛМ, показывают, что при минимальной уставке реле РТЗ-51 первичные токи срабатывания комплектов защит, использующих разные экземпляры однотипных ТТНП, могут существенно отличаться от 0,69 А и друг от друга (в эксперименте с тремя разными ТТНП они находились в пределах 0,55–0,76 А). Отличаются и токи срабатывания при двух и большем количестве ТТНП.
В результате в каждом конкретном случае первичный ток срабатывания защиты приходится определять опытным путем, пропуская через окно (или окна) ТТНП провод и поднимая ток до момента срабатывания защиты. С таким неудобством приходится сталкиваться каждому специалисту, занятому эксплуатацией защит кабельных линий от ОЗЗ. Как правило, указанная особенность не приводит к существенным затруднениям при выборе уставок. Однако бывают и другие случаи

ПИТАНИЕ РАЗНЫХ ПОТРЕБИТЕЛЕЙ ОТ ОДНОГО ВЫКЛЮЧАТЕЛЯ

На рис. 3 показана схема, где к одному выключателю подключен пучок из двух кабелей. В цепи каждого кабеля установлен свой трансформатор ТА тока нулевой последовательности. Такое решение можно считать типовым, если оба кабеля идут к одному потребителю. Рассматриваемый же пример характерен для давно построенных подстанций, сетевой район вокруг которых продолжает развиваться. В таких случаях иногда, при невозможности или неэкономичности расширения КРУ на подстанции, принимают решение о подключении к одному выключателю двух потребителей, питающихся по отдельным кабелям. Иногда такие решения принимаются и на вновь проектируемых подстанциях, когда у работников проектной организации нет полной информации о потребителях и их схемах присоединения к ЛЭП. Вторичные обмотки ТА в данном случае были включены последовательно и к ним подключена обмотка токового реле КА. Специалисты, эксплуатирующие описываемую установку, отметили, что часто защита рассматриваемых фидеров от ОЗЗ не срабатывает при однофазных замыканиях на землю в кабелях. Как выяснилось впоследствии, рассматриваемые кабели идут к разным потребителям и не соединяются между собой на противоположной от питающей подстанции стороне. При ОЗЗ на одном из кабелей по схеме протекают токи нулевой последовательности (на рисунке изображены стрелками). По трансформаторам тока ТА эти токи, как видно из рисунка, протекают в разных направлениях.


Проведенные в НГТУ эксперименты показали, что характеристики срабатывания защиты, собранной по рассматриваемой схеме, выглядят так, как это показано на рис. 4. По вертикальной оси отложен ток в трансформаторе тока ТА1, а по горизонтальной оси – в трансформаторе тока ТА2. Если рабочая точка попадает внутрь характеристики срабатывания (на рисунке показано несколько характеристик, соответствующих разным уставкам на реле КА типа РТЗ-51: синяя соответствует уставке реле в 20 мА, красная – в 80 мА, зеленая – в 140 мА). Из рисунка видно, что даже незначительные токи в ТА1 могут заблокировать защиту, т.е. привести к отказу в срабатывании при ОЗЗ, несмотря на достаточно большой ток в трансформаторе ТА2.

Например, если по ТА1 протекает ток в 15 А, то даже ток в 60 А, протекающий по трансформатору тока ТА2, не приводит защиту к срабатыванию.
Так и произошло в приведенном случае: несмотря на то, что токи нулевой последовательности, протекающие по ТА1 и ТА2, отличались во много раз, при таком токораспределении защита не срабатывала. Пришлось в цепь каждого ТА ставить свое токовое реле. Теперь защита работает нормально.
Справедливости ради следует отметить, что дальнейшие эксперименты А.М. Хабарова, результаты которых приведены на рис. 5, показали, что существенного улучшения характеристик защиты можно было добиться также, изменив схему соединения вторичных обмоток ТТНП с последовательной на параллельную. При этом зона несрабатывания защиты существенно уменьшалась и располагалась вблизи биссектрисы графика, т.е. заблокировать защиту теперь можно только противоположным по фазе током в ТА1, величина которого близка к току в ТА2. Обозначения на рис. 5 те же, что на рис. 4.


НАРУШЕНИЕ КОНТАКТНОГО СОЕДИНЕНИЯ

Еще один интересный случай, связанный с работой защиты на «пучке кабелей», проиллюстрирован рис. 6.
Потребитель М получает питание от секции сборных шин через пучок из двух кабелей и силовой выключатель. В нормальном режиме работы токи в фазах потребителя равны по величине и сдвинуты по фазе друг относительно друга на 120 электрических градусов (рис. 7а). Суммарный ток нагрузки, значение которого зависит от режима работы потребителя, равномерно распределяется по кабелям пучка. Векторная диаграмма первичных токов, протекающих по каждому кабелю, аналогична изображенной на рис.7а, но величина каждого из этих токов в два раза меньше суммарного тока потребителя. В результате этого суммарный магнитный поток в каждом из кабельных трансформаторов тока нулевой последовательности равен нулю и токи во вторичных цепях этих трансформаторов отсутствуют. Реагирующий орган защиты находится в несработавшем состоянии.


При нарушении одного из контактных соединений в кабельном пучке (например, в фазе А правого кабеля) ток в соответствующей фазе кабеля уменьшается. Но поскольку суммарный ток в фазе А потребителя определяется в основном сопротивлением потребителя, а не кабеля (сопротивление кабеля чрезвычайно мало по сравнению с сопротивлением потребителя), суммарный ток в фазе А потребителя практически остается прежним. Следовательно, возрастает на соответствующую величину ток в фазе А оставшегося исправным кабеля. На рис. 7б показана векторная диаграмма фазных токов в правом кабеле в рассматриваемом режиме.
Предполагается, что ток в фазе А продолжает протекать, но его величина уменьшилась по сравнению с токами в фазах В и С. Из рис. 7б видно, что сумма токов в фазах правого кабеля уже не равна нулю, она равна 3I0. Это эквивалентно появлению в правом кабеле тока нулевой последовательности, причем этот ток может достигать весьма большой величины, соизмеримой с фазным током нагрузки. В результате во вторичной обмотке кабельного трансформатора тока нулевой последовательности правого кабеля возникает электродвижущая сила и ток, путь протекания которого рассмотрен ниже.
Ток в фазе А неповрежденного левого кабеля увеличился и стал больше токов в фазах В и С (рис. 7в). В результате суммарный магнитный поток в кабельном трансформаторе тока левого кабеля также стал отличным от нуля. Во вторичной обмотке этого трансформатора тока появилась электродвижущая сила и ток, направленный противоположно току в обмотке ТТНП левого кабеля. В результате токи, протекающие по вторичным обмоткам ТТНП, станут замыкаться через вторичные обмотки кабельных трансформаторов тока нулевой последовательности.


Специалисты одной из энергосистем, которые обратились к нам с описанием такого случая, отмечали, что при последовательном соединении вторичных обмоток ТТНП у них неоднократно отмечались отказы защиты от ОЗЗ. Сами факты нарушения контактных соединений они обнаруживали с помощью тепловизора. Нетрудно убедиться, что рассматриваемый случай, по сути, идентичен рассмотренному выше. При некоторых сочетаниях значений токов, возникающих при ОЗЗ в одном из кабелей, рабочая характеристика попадает в зону несрабатывания (рис. 4) и защита не срабатывает.
При малых «разбалансах» токов в одинаковых фазах разных кабелей ток в реагирующем органе защиты мал и ложное срабатывание защиты не происходит. При дальнейшем ухудшении контактных соединений появляется ток небаланса, который при одних ОЗЗ (например, в фазе А) может недопустимо загрубить защиту (ток срабатывания повышается в 1,5–1,9 раза), а при других ОЗЗ ток срабатывания может недопустимо снизиться, в результате чего защита может сработать излишне (при внешних ОЗЗ) или ложно (при отсутствии ОЗЗ) (рис. 4).

Как и в предыдущем случае, переход к параллельному включению вторичных обмоток ТТНП несколько упростит ситуацию, хотя и не позволит полностью избавиться от проблемы.
Следует отметить, что последовательное соединение вторичных обмоток трансформаторов тока нулевой последовательности дает небалансы гораздо большей величины, чем при параллельном соединении (рис. 4, 5). Вероятность отказов защиты при ОЗЗ на защищаемом кабеле и вероятность ложных срабатываний (при отсутствии ОЗЗ в сети) при последовательном соединении вторичных обмоток ТТНП сильно возрастает.

В настоящее время на кафедре электрических станций НГТУ разрабатывается устройство, позволяющее предотвратить описанные выше отказы в срабатывании защиты и формирующее сигнал для обслуживающего персонала о нарушении контактного соединения в пучке кабелей. Кроме повышения надежности и эффективности защиты от ОЗЗ, такое устройство позволит избавиться еще от одной неприятности: при нарушении контактного соединения в одном кабеле соответствующая фаза второго кабеля может перегрузиться, повысится температура изоляции и ускорится ее старение.
Проведенные эксперименты показали, что совместная работа разъемного и неразъемного ТТНП, как при последовательном, так и при параллельном соединении их обмоток, существенно ухудшает характеристики защиты в рассмотренных выше случаях.

Часть 3

ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6-35 кВ

Достоинства и недостатки различных защит

экспертное мнение

Сергей Титенков,
к.т.н., ОАО «ПО Элтехника»

Тема, рассмотренная в статье А.И. Шалина, крайне актуальна для эксплуатирующих и проектных организаций. К сожалению, до последнего времени в России использовался режим изолированной нейтрали и неселективная сигнализация замыканий на землю. Сейчас ситуация меняется, и в некоторых сетях переходят к действию защит от однофазных замыканий на отключение. При этом, конечно же, возникает проблема выбора правильных уставок. Автор достаточно подробно разбирает эту проблему.

Однако, на мой взгляд, отдельные соображения, изложенные автором в статье, точнее, в разделах, посвященных выбору уставок срабатывания релейных защит от однофазных замыканий на землю, нуждаются в небольшом комментарии.

Так, автор совершенно верно отмечает расхождения в рекомендациях по определению величины коэффициента броска при выборе уставки срабатывания защит от замыканий на землю. Ничего удивительного в этом нет. Данный коэффициент специалисты приводят на основании опыта эксплуатации, а не расчетов.

Что мы называем броском емкостного тока? Это высокочастотный ток нулевой последовательности, возникающий вследствие перезаряда емкости присоединения при однофазном замыкании. Его величина определяется в основном емкостью присоединения и индуктивностью источника, а также токоограничивающих реакторов при их наличии. Присутствие дугогасящего реактора в нейтрали никак не сказывается на величине тока перезаряда. Впрочем, как и наличие резистора, который включается в сетях 6–10 кВ в нейтраль маломощного трансформатора заземления нейтрали.

Каким же образом возникло представление, отраженное в том числе и в данном материале, что возможно уменьшение коэффициента броска при наличии в сети заземления через резистор? Похоже, что это ошибочное, на мой взгляд, мнение сформировалось на основании работы Зильбермана В.А., Эпштейна И.М., Петрищева Л.С. и Рождественского Г.Г. «Влияние способа заземления нейтрали сети собственных нужд блока 500 МВт на перенапряжения и работу релейной защиты», опубликованной в журнале «Электричество» № 2 за 1987 год.

Думается, что проблема выбора уставок защит от однофазных замыканий на землю и величины коэффициента броска емкостного тока требует более детального анализа.

Основные типы защит от ОЗЗ

В настоящее время в России и за рубежом применяются следующие основные разновидности защит от ОЗЗ:

Защиты, измеряющие напряжение нулевой последовательности.

Ненаправленные защиты, регистрирующие составляющую промышленной частоты тока нулевой последовательности.

Направленные защиты, реагирующие на составляющие промышленной частоты тока и напряжения нулевой последовательности.

Защиты, фиксирующие «наложенный» ток с частотой, отличной от промышленной.

Защиты, реагирующие на высокочастотные составляющие в токе нулевой последовательности, возникающие естественным путем.

Защиты, реагирующие на составляющие тока и напряжения нулевой последовательности в переходном процессе ОЗЗ.

Рассмотрим достоинства и недостатки этих защит, а также аппаратуру, реализующую соответствующие принципы и имеющуюся на отечественном рынке. Будем при этом учитывать, что современные микропроцессорные терминалы обычно позволяют реализовать сразу несколько алгоритмов, относящихся к различным принципам действия защит. В процессе проектирования и эксплуатации выбираются один или несколько наиболее подходящих к конкретным условиям эксплуатации алгоритмов и уточняются уставки.

Следует отметить, что вопрос выбора уставок большинства разновидностей защит от ОЗЗ в настоящее время весьма далек от своего окончательного решения и требует отдельного обсуждения.

1. Защиты, измеряющие напряжение нулевой последовательности

Эти защиты могут действовать на отключение линии с ОЗЗ в том случае, если от сборных шин подстанции отходит только одна линия – такие объекты встречаются. Для одного такого весьма ответственного объекта напряжением 35 кВ автор настоящей статьи выбирал виды защитных устройств, схемы и уставки защиты в текущем году.

По сравнению с ненаправленными токовыми и другими защитами рассматриваемый вариант обладает существенными преимуществами – в напряжении нулевой последовательности содержится гораздо меньше высокочастотных составляющих и защита по напряжению нулевой последовательности лучше ведет себя, например, при перемежающихся и прерывистых ОЗЗ. Ей также не мешает наличие в сети дугогасящего реактора.

Одним из недостатков такой защиты при ее подключении к соединенной по схеме «разомкнутого треугольника» обмотке установленного на сборных шинах трехфазного трансформатора напряжения (ТН) или группы однофазных является то, что она может работать неправильно. Например, при сгорании одного из предохранителей, установленных в первичных цепях этих измерительных трансформаторов, защита может отключить неповрежденный защищаемый объект. Обычно для блокирования срабатывания защиты в таком случае предусматривается реле максимального напряжения обратной последовательности, подключенное к вторичной обмотке того же ТН, соединенной в «звезду». Тогда при сгорании предохранителя защита блокируется и защищаемый объект на время восстановления исправности предохранителя остается без защиты от ОЗЗ. Если комплект защиты установлен на подстанции без постоянного обслуживания, то защита может надолго оказаться заблокированной.

Можно использовать несколько выходов из создавшейся ситуации:

не устанавливать предохранители в первичных цепях ТН;

использовать дополнительный комплект защиты, подключенный к однофазному ТН, включенному между нейтралью питающего силового трансформатора и землей (у трехобмоточных силовых трансформаторов на стороне 35 кВ нейтраль обычно выведена);

применить резервный комплект защиты, подключенный еще к одному ТН, установленному на сборных шинах, и т.д.

Выше уже отмечалось, что действовать на отключение рассматриваемая разновидность защиты может только в том случае, если к сборным шинам подключено лишь одно присоединение. При наличии нескольких присоединений такая защита может быть использована только в качестве неселективной сигнализации, т.е. сообщать о появлении в сети ОЗЗ без указания поврежденного присоединения. Именно в таком качестве она и используется в подавляющем большинстве случаев.

При этом поиск поврежденного присоединения обычно производится поочередным отключением присоединений по признаку исчезновения напряжения нулевой последовательности, что может вызвать значительные трудности. Известно о ряде аварий, связанных с такими отключениями и последующими включениями – например, случай отказа во включении одной из фаз воздушного выключателя на 35 кВ с пофазным приводом и повреждением силового трансформатора, вызванного явлением феррорезонанса. Неоднократно при длительном присутствии ОЗЗ в сети наблюдались «вторичные» пробои изоляции в двигателях, что вызывало большие токи в месте повреждения и значительные затраты на ремонт и т.д.

В некоторых случаях снизить остроту ситуации можно «доступными» средствами. Например, если на распределительных устройствах 35 кВ имеются не секции, а системы шин с нормально отключенным шиносоединительным выключателем. В таких случаях поиск поврежденного присоединения целесообразно производить не поочередным отключением и включением присоединений, а временным их переводом на вторую систему шин. При этом задача может быть решена без отключения присоединений.

Следует отметить, что и этот путь имеет большие недостатки. Гораздо более радикальным решением является установка селективной токовой защиты, выявляющей поврежденное присоединение. Такая защита может быть построена на использовании рассмотренных ниже принципов.

2. Ненаправленные защиты, регистрирующие составляющую промышленной частоты тока нулевой последовательности

Работа защит в сетях с изолированной нейтралью


Далеко не всегда удается реализовать эффективную ненаправленную токовую защиту нулевой последовательности в сетях с изолированной нейтралью (без дугогасящего реактора и резистивного заземления нейтрали).

В первую очередь это относится к сетям с воздушными линиями электропередачи, в частности напряжением 35 кВ, где используются трехтрансформаторные фильтры тока нулевой последовательности, а в месте ОЗЗ могут возникать большие переходные сопротивления. Здесь защиту надо отстраивать не только от собственного емкостного тока защищаемого присоединения, а еще и от тока небаланса нулевой последовательности, появляющегося из-за неодинаковых характеристик трансформаторов тока, из которых собран фильтр тока нулевой последовательности. При возникновении в месте ОЗЗ большого переходного сопротивления, защита, отстроенная от собственного емкостного тока и тока небаланса трехтрансформаторного фильтра, может не сработать. В таких сетях, а также в сетях, в которых эксплуатируются одновременно воздушные и кабельные ЛЭП, целесообразно использовать направленные токовые защиты нулевой последовательности.

Выбор уставок срабатывания релейных защит от ОЗЗ в сетях с изолированной нейтралью

Ток срабатывания защиты кабельной линии от ОЗЗ в сети с изолированной нейтралью Iсз принято выбирать из следующего условия:

,  (1)

где Кн – коэффициент надежности; Кбр – коэффициент «броска», учитывающий бросок емкостного тока в момент возникновения ОЗЗ, а также способность реле реагировать на него; Ic.фид.макс– максимальный емкостный ток защищаемого фидера.

Для мгновенно действующих защит от ОЗЗ в расчетах следует принимать значение произведения Кн• Кбр= 4–5. Для защит с выдержкой времени при возможности возникновения перемежающейся дуги Кн• Кбр= 2,5. По-видимому, эти значения рекомендованы для традиционных отечественных реле защиты включая РТЗ-51.

В некоторой литетратуре предлагается считать Кн 1,2, Кбр= 3–5,(применительно к реле старых типов). Для реле РТЗ-51 рекомендуется принимать Кбр= 2–3. При этом предлагается выполнять защиту без выдержки времени. «При использовании для защиты от ОЗЗ современных цифровых реле, например, серии SPACOM, в том числе SPAC-800 можно принимать значения Кбр= 1–1,5 (необходимо уточнить у фирмы-изготовителя)».

Чувствительность проверяется по величине коэффициента Кч:

, (2)

где Iзащ – ток в защите поврежденной ЛЭП, равный разности суммарного емкостного тока сети в рассматриваемом расчетном режиме и емкостного тока поврежденной ЛЭП; Кч.норм– нормативный коэффициент чувствительности.

Рекомендуется принимать Кч.норм = 1,25–1,5, причем нижнее значение величины kч относить к кабельным ЛЭП, а верхнее – к воздушным.

В некоторой литературе предлагается считать Кч.норм = 1,5–2,0.

Условия (1), (2) могут быть реализованы для мгновенно действующих защит в кабельных сетях в том случае, если суммарный емкостный ток ЗI0лэп защищаемой линии в 5–10 раз меньше, чем емкостный ток оставшихся присоединений в рассматриваемом (минимальном) режиме сети. Для защит с выдержкой времени в тех же сетях (1) и (2) удается реализовать, если ток ЗI0лэп в 3–5 раз меньше емкостного тока оставшихся присоединений. Такие соотношения выполняются в сетях 6–35 кВ далеко не всегда.

Для кабельных сетей 6–10 кВ отдельных цехов предприятий, в которых имеется большое количество присоединений с малым емкостным током (например, десятки маломощных двигателей) и отсутствуют дугогасящие реакторы, во многих случаях приведенные выше условия выполняются и рассматриваемая защита может работать достаточно эффективно.

Для распределительных подстанций и коммутационных пунктов описанные выше условия часто не выполняются, что приводит к необходимости использовать более совершенные защиты.

Для защит воздушных ЛЭП, в которых используются трехтрансформаторные фильтры тока ЗI0, ток срабатывания следует выбирать следующим образом:

, (3)

где Iнб – ток небаланса фильтра;

Поскольку емкостный ток воздушных ЛЭП невелик (примерно в 35 раз меньше, чем в кабелях при одинаковой длине), ток небаланса может оказать существенное влияние на выбор тока срабатывания защиты. О расчете величины Iнб следует говорить отдельно.

Работа защит в резистивно-заземленных сетях


В некоторых случаях необходимую эффективность можно обеспечить с помощью ненаправленных токовых защит нулевой последовательности. В первую очередь это относится к резистивно-заземленным сетям. Если, например, речь идет о защите кабельной сети собственных нужд электростанции, в которой в месте ОЗЗ протекает активный ток заземляющего резистора порядка 35–40 А, а емкостные токи отдельных присоединений не превышают нескольких ампер, то здесь успешно могут быть использованы многие из известных токовых реле.

Однако эксплуатация защит, построенных на токовых реле устаревших конструкций, например серий РТ-40/0,2, может привести к неселективной работе из-за резкого увеличения токов нулевой последовательности при дуговых замыканиях за счет высокочастотных составляющих.

Более совершенными являются защиты, построенные на отечественных реле типа РТЗ-51, блоках микропроцессорной защиты БМРЗ (например, БМРЗ-КЛ-11, БМРЗ-КЛ-36, БМРЗ-КЛ-42, БМРЗ-КЛ-51) НТЦ «Механотроника», терминалах защиты SEPAM типа S20 (код ANSI 50N/51N или 50G/51G) фирмы Schneider Electric, защиты серии SPACOM, например, SPAC-800 производства «АББ Реле-Чебоксары», устройства типа MiCOM P121, P122 Compact, P123 компании AREVA (бывшая ALSTOM), защита типа SIPROTEC 4 7SJ61 фирмы SIEMENS и т. д.

Меньше всего затрат требует установка реле РТЗ-51, но эти устройства способны обеспечить защиту присоединений только от ОЗЗ. Остальные же перечисленные микропроцессорные терминалы обеспечивают также защиту от междуфазных коротких замыканий и некоторых других ненормальных режимов работы.

При правильном выборе уставок все упомянутые защиты, включая отечественные, могут эффективно работать в рассматриваемом случае. Но следует иметь в виду особенность горения дуги в кабелях с бумажной изоляцией, пропитанной масляно-канифольной мастикой, (прерывистая дуга), и либо не использовать выдержку времени, либо пользоваться ею крайне осторожно, принимая соответствующие решения на основании результатов опытной эксплуатации.

Большинство импортных релейных терминалов имеют опции, обеспечивающие их правильное функционирование в режимах с прерывистой дугой. Для этого в них предусматривается возможность использовать задержку времени на возврат токового органа после его кратковременного срабатывания. Выбрав время возврата больше длительности бестоковой паузы в дуге, обеспечивают правильную работу защиты, в частности, на кабелях с бумажно-масляной изоляцией. При этом защита может действовать как мгновенно, так и с выдержкой времени, но при выборе ступени селективности следует учитывать введенную задержку на возврат. При этом ступень селективности увеличивается. Удобно использовать «токозависимые» выдержки времени.

Перечисленные защиты содержат фильтры, выделяющие синусоидальную составляющую промышленной частоты, что позволяет существенно улучшить отстройку от режима внешних дуговых замыканий. Использование таких фильтров вызывает обоснованную тревогу некоторых специалистов, поскольку трудно гарантировать их правильную работу, например, в процессе горения перемежающейся дуги. Однако отказ от использования этих фильтров резко снижает селективность защиты.

Выбор уставок срабатывания релейных защит от ОЗЗ при наличии резистивного заземления нейтрали


Установка в сети заземляющего резистора облегчает условия выбора уставок и улучшает селективность работы релейных защит от ОЗЗ.

При защите асинхронных двигателей коэффициент броска при установке заземляющего резистора для всех видов используемых реле может быть снижен до значения Кбр= 1,2...1,3. Иногда при расчете защиты от ОЗЗ кабельных фидеров 6–10 кВ и наличии заземляющего резистора предлагается принимать Кбр= 1,2...1,5.

В результате при установке в сети заземляющих резисторов ток срабатывания ненаправленных защит от ОЗЗ может быть несколько снижен.

Проще обеспечить и чувствительность защиты, поскольку через защиту поврежденной линии теперь протекает сумма соответствующих емкостных токов и активного тока заземляющего резистора:

,  (4)

причем I'CΣ – суммарный емкостный ток сети за вычетом емкостного тока защищаемого фидера, IR – ток заземляющего резистора.

Коэффициент чувствительности защиты по-прежнему определяется по (2).

Наибольший эффект установка резистора дает в сетях с малыми токами ЗI0 в минимальном режиме, т.е. когда по каким-то причинам (ремонт, необходимость технологического цикла и т.д.) некоторые присоединения в сети отключаются и ее емкостный ток уменьшается. В следующем номере журнала мы расскажем об особенностях применения более совершенных защит от ОЗЗ.

Часть 4

ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6-35 кВ

ПРИМЕР РАСЧЕТА УСТАВОК

ОСОБЕННОСТИ ПРОБЛЕМЫ РАСЧЕТА

Специалисты существенно расходятся во мнениях относительно таких основополагающих для расчета величин, как коэффициент броска, нормируемый коэффициент чувствительности и т.д. Эти расхождения объясняются различными результатами, полученными в основном в процессе эксплуатации защит от ОЗЗ. Однако это никак не оправдывает пассивности таких организации, как, например, РАО «ЕЭС России», призванных обеспечить разработку нормативных материалов, которые позволили бы проектантам грамотно выбирать виды защиты от ОЗЗ, рассчитывать уставки и проверять чувствительность соответствующих устройств. В настоящее время такие нормативные документы отсутствуют, что существенно затрудняет работу специалистов, занятых проектированием и эксплуатацией устройств защиты от ОЗЗ, и заметно снижает качество этой работы. Существуют и объективные факторы, затрудняющие создание такого рода нормативных документов.
Основная проблема, на взгляд автора настоящей статьи, заключается в том, что сильно отличаются как условия эксплуатации, так и основные характеристики применяемых в настоящее время в России устройств защиты от ОЗЗ. То, что справедливо в одном случае, в другом – сомнительно, а в третьем и вовсе неправильно. Разработать нормы, применимые во всех без исключения случаях, чрезвычайно сложно. Выход может заключаться в разделении всех защищаемых объектов и устройств защиты от ОЗЗ на отдельные достаточно узкие классы и разработке нормативов для каждого класса объектов.
В последнее время были «узаконены» два новых режима заземления нейтрали сетей 6–35 кВ: резистивное заземление и заземление через параллельно включенные дугогасящий реактор и заземляющий резистор. Это нововведение также требует пересмотра методики расчета уставок защит от ОЗЗ в таких сетях. Рассмотрим вопросы выбора уставок на конкретном примере.

СХЕМА РАССЧИТЫВАЕМОЙ СЕТИ


На рис.1 приведена упрощенная схема сети, применительно к которой выберем типы защит и рассмотрим выбор уставок.
Схема питается от одного трансформатора Тр1 напряжением 110/35/10 кВ, причем по стороне 35 кВ от шин отходит всего одна питающая линия ЛЭП1, в цепи которой есть выключатель и на которой установим комплект защиты РЗ. На некотором расстоянии от подстанции ЛЭП1 разветвляется и дальше параллельно (две цепи на одной опоре в габаритах 110 кВ) идут линии ЛЭП2 и ЛЭП3, от каждой из которых запитан соответствующий понижающий трансформатор Тр2 и Тр3 напряжением 35/10 кВ. В цепях ЛЭП2 и ЛЭП3 со стороны питающей подстанции выключатели отсутствуют, установлены только разъединители. После разъединителей имеются достаточно протяженные кабельные вставки. Нейтрали обмоток 35 кВ Тр1, Тр2, Тр3 выведены, и к ним могут быть подключены заземляющие резисторы R1, R2 и R3 соответственно.

Рис.1.

Схема сети

На разветвлении, где ЛЭП1 переходит в ЛЭП2 и ЛЭП3, установим два комплекта селективной сигнализации «поврежденного участка» КС1 и КС2 для селективного определения поврежденной линии (ЛЭП2 или ЛЭП3). На стороне 10 кВ питающего трансформатора Тр1 имеется распределительное устройство, от которого питается несколько линий. Одна из этих линий, подключенная к РУ-10 кВ через соответствующий выключатель, конструктивно выполнена как вторая цепь, проложенная параллельно линии ЛЭП1 на тех же опорах (выполненных в габаритах 110 кВ) и дальше уходящая «в сторону» и выполненная на отдельных опорах.
В районе прокладки воздушных линий ЛЭП1, ЛЭП2, ЛЭП3 имеются участки со скальным грунтом, обладающим большим удельным сопротивлением, т.е. при обрыве провода ЛЭП и падении его на землю возможно появление большого переходного сопротивления.
Следует отметить, что приведенная схема не является плодом воображения автора настоящей статьи, а в несколько упрощенном виде соответствует реальному, весьма ответственному объекту, в проектировании для которого релейной защиты от ОЗЗ и селективной автоматики КС1 и КС2 автор принимал участие. Расчеты показали, что в рассматриваемой сети при ОЗЗ возможны значительные (порядка 3,7 от фазного напряжения) перенапряжения, которые могут привести к повреждению дорогостоящего оборудования. Было принято решение для подавления перенапряжений и феррорезонансных явлений установить заземляющие резисторы.

Рассматривались два варианта их установки:

только на питающей подстанции 110/35/10 кВ;

два модуля параллельно на питающей подстанции и по одному модулю в нейтрали соответственно Тр2 и Тр3.

ВЫБОР ТИПОВ УСТРОЙСТВ ЗАЩИТЫ И СИГНАЛИЗАЦИИ


Поскольку в цепи ЛЭП1 установить кабельную вставку нет возможности, а питающая линия ЛЭП1 одна, было принято решение на ЛЭП1 установить защиту от ОЗЗ, реагирующую на напряжение нулевой последовательности. В результате на питающей подстанции было установлено два комплекта такой защиты: первый (основной) комплект присоединен к однофазному трансформатору напряжения, включенному параллельно заземляющему резистору R1. Второй (резервный) комплект присоединен к трехфазной группе трансформаторов напряжения, установленных на шинах 35 кВ питающей подстанции. Комплекты селективной сигнализации выполнены в виде токовых реле, о выборе типов и расчете уставок которых будет сказано в дальнейшем.

ВЫБОР УСТАВОК ЗАЩИТЫ ОТ ОЗЗ


Уставки защиты должны быть выбраны так, чтобы:

защита не срабатывала от небалансов, которые могут появиться в сети при отсутствии в ней ОЗЗ;

защита срабатывала при ОЗЗ на воздушной ЛЭП при падении провода на грунт и возникновении большого переходного сопротивления.

Анализ показал, что удовлетворить сразу обоим указанным требованиям весьма непросто.
Автор настоящей статьи не нашел в известных ему публикациях указаний по поводу расчета уставок защиты от ОЗЗ, реагирующей на напряжение нулевой последовательности. К тому же основные положения расчета уставок защит, реагирующих как на напряжения, так и на токи нулевой последовательности, близки. По этой причине ниже рассмотрены основные положения по выбору уставок и проверке чувствительности таких защит.


НЕБАЛАНСЫ ЗАЩИТЫ ОТ ОЗЗ


Небаланс, связанный с разными емкостями фаз воздушных ЛЭП относительно земли Uнб.см.н.
Расположение фазных проводов воздушных ЛЭП в рассматриваемом случае – вертикальное: один провод над другим, а над ними – провод третьей фазы. В результате, как показали расчеты, максимальное различие фазных емкостей относительно земли (между верхней и нижней фазой) составило около 20%. Это привело к смещению нейтрали (небалансу), определяемому по следующему выражению:

,

; ; ; , (2)


В (2) CA , CB , CC– емкости относительно земли фаз А, В и С соответственно; RN– общее сопротивление всех заземляющих резисторов, включенных в нейтрали трансформаторов.
Включенные в нейтрали сторон 35 кВ трансформаторов заземляющие резисторы R1, R2, R3 существенно снизили рассматриваемую составляющую небаланса, но из-за отсутствия транспозиции проводов ЛЭП (изменения расположения проводов относительно земли) она составила 2,2% от номинального напряжения.

Для того чтобы «симметрировать» сеть, было предложено выполнить транспозицию проводов «на шинах», т.е. после развилки на ЛЭП2 и ЛЭП3 расположить провода в фазах иначе, чем на ЛЭП1. Это предложение было принято и реализовано на практике. При одинаковом расположении проводов в ЛЭП2 и ЛЭП3 небаланс снизился до 1,2%. Если же расположить провода во всех трех ЛЭП по-разному, то рассматриваемая составляющая небаланса составит примерно 0,4%. Однако при этом следует помнить, что одна из ЛЭП2 или ЛЭП3 может быть длительно отключена и тогда в расчетах придется принимать небаланс порядка 1,44% (эта величина была рассчитана для случая отключения одной из линий – ЛЭП2 или ЛЭП3).


НЕБАЛАНС, ВЫЗВАННЫЙ ВЛИЯНИЕМ ЛЭП4 И ЛЭП10


Расчеты показали, что при возникновении ОЗЗ в сети 10 кВ за счет межцепных емкостей на линиях ЛЭП1 и ЛЭП4, размещенных на общих опорах, в сети 35 кВ нейтраль дополнительно сместится (появится небаланс). На рис. 2 показаны учитываемые при расчете емкости линий ЛЭП1 и ЛЭП4, а на рис. 3 приведена схема замещения, в соответствии с которой может быть определена рассматриваемая составляющая небаланса.

Рис. 2. Учитываемые в расчете емкости

C1 – емкость относительно земли трех фаз линии ЛЭП1;
CM – межцепная емкость между цепями (всех трех фаз) 35 кВ и 10 кВ на ЛЭП1 и ЛЭП4;
C2 – емкость трех фаз сети 10 кВ относительно земли.

Рис. 3. Расчетная схема для определения небаланса, вызванного влиянием ЛЭП4

EФ – фазная ЭДС в месте замыкания на землю в сети 10 кВ;
СМ – суммарная межфазная емкость между цепями 10 кВ и 35 кВ линий ЛЭП1 и ЛЭП4;
E3 – суммарная емкость трех фаз относительно земли в сети 35 кВ;
RN2 – результирующее сопротивление заземляющих резисторов в сети 35 кВ.

Значения рассматриваемой составляющей небаланса UN2 нетрудно рассчитать в соответствии с рис. 3. Если замыкание на землю в сети 10 кВ возникает при полностью включенной сети 35 кВ, то «смещение нейтрали» сети 35 кВ составит примерно 2,75% фазного напряжения. Если ОЗЗ в сети 10 кВ возникнет при отключении ЛЭП2 или ЛЭП3, то «смещение нейтрали» составит 4,3% от фазного.
Небаланс, вызванный неидентичностью характеристик фаз трансформатора напряжения Uнб.нес. ТН Практические замеры небалансов на выводах соединенных по схеме «разомкнутый треугольник» обмоток трансформаторов напряжения 35 кВ показывают, что у большинства трансформаторов напряжение небаланса, вызванного неидентичностью фаз, не выходит за пределы 1–1,5 В, что соответствует 1–1,5% первичного фазного напряжения.
В основном комплекте защиты этот небаланс будет отсутствовать, поскольку напряжение нулевой последовательности здесь снимается непосредственно с нейтрали силового трансформатора.
В резервном комплекте этот небаланс будет присутствовать, и от него защиту надо будет отстроить.

НЕБАЛАНС, ВЫЗВАННЫЙ НЕСИММЕТРИЕЙ ФАЗНЫХ НАГРУЗОК


В рассматриваемой сети отсутствуют нагрузки, имеющие непосредственную связь с землей, поэтому небаланс, вызванный неравенством фазных токов таких нагрузок, не рассматриваем. Однако заземляющие резисторы, включенные в нейтрали понижающих трансформаторов Тр2, Тр3, могут вызвать в защите сети 35 кВ дополнительную составляющую небаланса. Это связано с тем, что из-за несимметрии нагрузок в сети 0,4 кВ могут возникнуть разные токи в фазах сети 10 кВ. Трансформируясь в сеть 35 кВ, эти токи могут привести к смещению нейтрали 35 кВ относительно земли.
Обычно такое смещение не приводит к небалансу по напряжениям и токам нулевой последовательности в сети 35 кВ, однако при наличии заземляющих резисторов в нейтралях понижающих трансформаторов Тр1 и Тр2 приводит к тому, что смещение их нейтралей вызывает появление дополнительного небаланса токов и напряжений нулевой последовательности. Для того чтобы рассчитать эту составляющую небаланса, необходимо знать разницу в нагрузках фаз. На стадии проектирования эти данные отсутствовали.
Предварительно значение рассматриваемой составляющей небаланса было принято равным 2,5% фазного напряжения. В процессе эксплуатации значения небаланса в различных режимах должны быть уточнены замерами реальных величин.

РАСЧЕТ УСТАВОК ЗАЩИТЫ ОТ ЗАМЫКАНИЙ НА ЗЕМЛЮ НА ПИТАЮЩЕЙ ПОДСТАНЦИИ


Уставка по напряжению защиты от ОЗЗ определяется, как

, (3)


где Кн – коэффициент запаса, величина которого может быть принята равной 1,2–1,3;

(4)


При выборе уставки для основного комплекта защиты величину Uнб. нес. ТН учитывать не следует.

, (5)
где Uф – фазное напряжение.


Уставка защиты по времени была выбрана равной 1,0 с для того, чтобы согласовать по селективности релейную защиту, установленную на питающей подстанции, и селективную сигнализацию КС1 и КС2.


ПРОВЕРКА ЧУВСТВИТЕЛЬНОСТИ ЗАЩИТЫ


Выше отмечалось, что в рассматриваемом случае воздушные линии проложены по территории, для которой характерны участки с высоким удельным сопротивлением грунта (скальный грунт). Кроме того, зимой возможно падение провода на снег, что также приводит к появлению в месте ОЗЗ большого переходного сопротивления.
Предлагается определять напряжение нулевой последовательности 3U0 при ОЗЗ через переходное сопротивление RП следующим образом:

, (6)
где b – коэффициент полноты замыкания.


Комплексное значение коэффициента b может быть определено по следующему выражению:

, (7)

где RП – значение переходного сопротивления в месте ОЗЗ;
CΣ – суммарная емкость сети;
ZН– сопротивление, через которое нейтраль сети соединена с землей.


Путем несложных преобразований можем найти модуль b величины.

, (8)


где YR = 1 / RN;
YC – емкостная проводимость сети.


Общее сопротивление заземляющих резисторов в рассматриваемом случае

равнялось 2 кОм, суммарный расчетный емкостный ток в месте ОЗЗ в полной схеме сети – IC =19,7 А. Учитывая, что

, 1/Ом , (9)

в соответствии с (8) легко определить величину b для данной конкретной сети при различных значениях переходного сопротивления RП .
Величина b тесно связана с расчетным коэффициентом чувствительности защиты Кч . Защита перестанет чувствовать ОЗЗ при . Если принять значение нормируемого коэффициента чувствительности равным 2,0, то в рассматриваемом случае защита будет чувствовать ОЗЗ с переходным сопротивлением не больше 1,3 кОм. Если же принять Кч.норм = 1,5, то предельное переходное сопротивление, при котором защита еще будет ощущать ОЗЗ, составит примерно 0,7 кОм.
Достаточна ли такая чувствительность защиты для рассматриваемого объекта?

В одном из опытов ОЗЗ на воздушной ЛЭП в сети 35 кВ было отмечено переходное сопротивление порядка 5,0 кОм.

В результате можно прийти к выводу, что нормируемые коэффициенты чувствительности могут не обеспечить необходимой чувствительности защиты воздушных ЛЭП от ОЗЗ на рассматриваемом силовом объекте.
В соответствии с описанным выше, уставка по напряжению для основного комплекта защиты, установленного на питающей подстанции, была принята равной 12% фазного напряжения, что соответствует предельному переходному сопротивлению, равному 7,0 кОм. Уставка резервного комплекта с учетом дополнительного небаланса, вызванного неидентичностью фаз измерительного трансформатора напряжения, составила 14%, что соответствует предельному значению RП, равному 6,0 кОм. В принципе можно представить себе ситуацию (зима, сухой снег), когда переходное сопротивление превысит расчетные значения. Каков же выход из создавшегося положения? Ясно, что невозможно во всех реальных случаях обеспечить чувствительность защиты от ОЗЗ, реагирующей на токи и напряжения нулевой последовательности, к замыканиям на землю, сопровождающимся значениями в десятки килоом. В то же время лежащий на земле провод линии 35 кВ, находящийся под напряжением, может представлять большую опасность для туристов и других людей, которые могут оказаться в районе трассы ЛЭП. Установка защиты от обрывов, реагирующей на ток обратной последовательности, не всегда эффективна на ЛЭП, имеющих малые токи нагрузки в нормальном режиме работы, как это имеет место на рассматриваемом объекте.
Удачное решение предлагаемой задачи имеется в принятой к установке защите от ОЗЗ типа Р-142 фирмы AREVA. Здесь есть специальная опция обнаружения обрыва проводов воздушных ЛЭП. Защита содержит элемент, который измеряет отношение токов обратной последовательности и прямой последовательности (I2 / I1). Оно будет меняться в меньшей степени, чем измерение тока обратной последовательности, так как отношение почти неизменно при изменении тока нагрузки. Следовательно, можно получить более низкую уставку и чувствительную защиту. Для успешной работы защиты требуется минимальное значение тока обратной последовательности, равное 8% от тока прямой последовательности. Проведенные натурные испытания подтвердили адекватность выбранных типов защит требованиям защищаемого объекта. Выбранные уставки также не потребовали изменений.

ЧАСТЬ 5

ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТЯХ 6–35 кВ
РАСЧЕТ УСТАВОК НЕНАПРАВЛЕННЫХ ТОКОВЫХ ЗАЩИТ

О ЗНАЧЕНИЯХ КОЭФФИЦИЕНТА БРОСКА

Специалисты существенно расходятся во мнениях относительно таких основополагающих для расчета величин, как коэффициент броска, нормируемый коэффициент чувствительности и т.д.
В комментарии Сергей Титенков утверждает, что используемый в расчетах коэффициент броска, зависящий в основном от высокочастотного тока нулевой последовательности, возникающего в процессе разряда емкости поврежденной фазы цепи и заряда емкостей неповрежденных фаз, не уменьшается при резистивном заземлении нейтрали сети. Это определяется, в частности, тем, что этот резистор в сетях 6–10 кВ включается в цепь маломощного нейтралеобразующего трансформатора.
Как это часто бывает в действительности, любое конкретное высказывание имеет свои «границы истинности». Если речь идет о резисторах, устанавливаемых в нейтрали нейтралеров (нейтралер – трехфазная дроссельная катушка с соединением зигзагом), то такое мнение в большинстве случаев совершенно справедливо. По первой гармонике индуктивное сопротивление нейтралера мощностью 63 кВА на напряжении 10 кВ составляет 96 Ом . По 10–20 гармоникам, которые присутствуют в процессе перезаряда емкостей при ОЗЗ, это сопротивление возрастет до 960–1920 Ом и при сопротивлении резистора порядка 100–150 Ом суммарное сопротивление цепочки «нейтралер – заземляющий резистор» будет практически полностью индуктивным. В результате, в полном соответствии с мнением Сергея Титенкова, заземляющий резистор практически не окажет влияния на токи перезаряда емкостей и, таким образом, не повлияет на коэффициент броска.
На напряжении 35 кВ трехобмоточные силовые трансформаторы обычно имеют выведенную нейтраль. Заземляющий резистор включают в цепь этой нейтрали. В этом случае говорить о том, что этот резистор не влияет на токи перезаряда, было бы неверно.

О ВЫДЕРЖКЕ ВРЕМЕНИ

Рассмотрим этот вопрос на примере схемы, приведенной в 4 части данной статьи. Здесь питающий трансформатор напряжением 35 кВ имеет мощность 10 МВА. От него запитана одна воздушная ЛЭП, которая потом разделяется на две цепи, каждая из которых питает свой трансформатор мощностью 4 МВА со схемой соединения первичной обмотки в звезду с выведенной нейтралью. Для снижения уровня перенапряжений в нейтрали трансформаторов включены заземляющие резисторы. Использование в сети заземляющих резисторов позволяет повысить эффективность защиты, но при этом должна быть пересмотрена методика выбора ее уставок.
Ток срабатывания защиты от ОЗЗ IСЗ в сети с изолированной нейтралью при наличии кабельного трансформатора тока нулевой последовательности выбирается из следующего условия:

, (1)

где Кн = 1,2 (коэффициент надежности);
Кбр – коэффициент броска, учитывающий бросок емкостного тока в момент возникновения ОЗЗ, а также способность реле реагировать на него;
Iс.фид.макс – максимальный емкостный ток защищаемого фидера.


Для мгновенно действующих защит от ОЗЗ в расчетах следует принимать значение произведения Кн • Кбр = 4…5. Для защит с выдержкой времени при возможности возникновения перемежающейся дуги Кн • Кбр = 2,5. По-видимому, эти значения рекомендованы для традиционных отечественных реле защиты, включая РТЗ-51.
В некоторой литературе предлагается считать Кн = 1,2, Кбр = 3…5 (применительно к реле старых типов). Для реле РТЗ-51 рекомендуется принимать Кбр = 2…3. При этом предлагается выполнять защиту без выдержки времени. «При использовании для защиты от ОЗЗ современных цифровых реле, например, серии SPACOM, в том числе SPAC-800, можно принимать значения Кбр = 1…1,5 (необходимо уточнить у фирмы–изготовителя)».
По моему мнению, там, где это возможно, лучше использовать защиту от ОЗЗ с выдержкой времени. Это дает возможность обеспечить селективность при двух и более последовательно включенных ЛЭП, использовать в расчетах меньшее значение коэффициента броска, предотвращает ложные отключения неповрежденных линий после того, как отключается поврежденная линия (из-за феррорезонансных явлений, связанных с измерительными трансформаторами напряжения), и т.д.
В некоторых отраслях (шахты, карьеры и т.д.) имеются нормативные документы, требующие немедленного отключения ОЗЗ. Там необходимо использовать мгновенно действующие защиты от ОЗЗ.

ОПРЕДЕЛЕНИЕ ЕМКОСТНЫХ ТОКОВ

Величину Iс.фид.макс = ICS для сетей с изолированной нейтралью рекомендуется, например, определять следующим образом:

для кабельных сетей

, (2)

для сетей с воздушными ЛЭП

, (3)

где U – номинальное напряжение сети (кВ);
L – суммарная длина линий (км).


Суммарный емкостный ток сети определяется как сумма описанных выше составляющих для всех гальванически связанных линий сети.
Более точно величину емкостного тока Iс.фид.макс ЛЭП можно подсчитать, используя, например, данные по удельным емкостным токам в воздушных и кабельных ЛЭП. Однако отмечается, что величина емкостного тока, определенная по (2), (3), может давать погрешность порядка 40–80% по сравнению с реальным, замеренным при ОЗЗ в сети, током. Одна из причин – неучет емкостей относительно земли потребителей электроэнергии, например, двигателей, а также конструкции воздушных ЛЭП (тип опоры, с заземляющим тросом или без него) и т.д.
Рекомендуется для дальнейшего повышения точности расчетов емкостного тока сети ICS (в кА) использовать метод, основанный на определении тока ОЗЗ через емкость сети относительно земли:

, (4)

где Uф – фазное напряжение (кВ);
ω = 2πf = 314 (рад/с);
CΣ – емкость одной фазы сети относительно земли (Ф).

, (5)

где Сi – удельная емкость на фазу i-ой линии (Ф/км);
li– длина i-ой линии (км);
m – число линий (кабельных, воздушных с заземляющим тросом и без него);
Сj – емкость на фазу j-го элемента сети (Ф);
qj – число учитываемых элементов сети, кроме ЛЭП (например, двигателей);
n – общее число таких элементов.


Емкостные токи двигателей рекомендуется определять по (4), причем емкость Cд (в фарадах) для неявнополюсных синхронных двигателей и асинхронных двигателей с короткозамкнутым ротором рассчитывается по следующему выражению:

, (6)

где Sн – номинальная полная мощность двигателя (МВ·А);
Uн – номинальное напряжение двигателя (кВ).

Для остальных типов электрических двигателей:

, (7)

где Nн - номинальная частота вращения ротора (об/мин).

Как отмечалось выше, расчетные емкостные токи сети обычно отличаются от реальных, которые можно определить лишь замером на объекте. Однако процесс замера емкостного тока, кроме технических трудностей, связан еще и с некоторой методической неопределенностью. Опыт показывает, что на многих объектах в составе емкостного тока сети даже при металлическом ОЗЗ присутствуют не только составляющие промышленной частоты, но и значительные токи высших гармоник.
Замер суммарного значения тока, например, с помощью традиционных приборов, предназначенных для измерения токов промышленной частоты, связан с существенными погрешностями. Реально отмечались погрешности порядка 30% (в том числе в сторону уменьшения замеренных токов относительно расчетного). Более точно емкостный ток сети можно измерить путем осциллографирования с последующим разложением на гармонические составляющие.

ТОКИ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

В РЕЗИСТИВНО-ЗАЗЕМЛЕННЫХ СЕТЯХ

При наличии в сети нескольких заземляющих резисторов при внешнем ОЗЗ по защите может протекать также активный ток I IR. При этом вместо Iс.фид.макс в (1) надо подставлять

. (8)

Чувствительность проверяется по величине коэффициента Кч:

, (9)

где Кч.норм – нормируемый коэффициент чувствительности;
IЗ – ток в защите поврежденной ЛЭП;

Iсс – ток срабатывания защиты.


Рекомендуется принимать значение Кч.норм на уровне 1,5...2.


В резистивно-заземленных сетях и установках

, (10)

где I'CΣ– суммарный емкостный ток сети за вычетом емкостного тока защищаемого фидера;
IR – ток заземляющего резистора, протекающий по защите поврежденного присоединения.

ТОКИ В ПЕРЕХОДНЫХ РЕЖИМАХ ОЗЗ

В настоящее время слабо изучен вопрос о том, каким должно быть значение коэффициента Кбр при установке в нейтрали сети заземляющего резистора. Есть два мнения на этот счет:

значение Кбр должно быть таким же, как в сетях без заземляющих резисторов;

значение Кбр должно быть принято меньшим, чем в предыдущем случае.

Известно, что Кбр зависит, в частности, от отношения максимального тока перезаряда емкостей сети (токов разряда емкости поврежденной фазы и дозаряда емкостей «здоровых» фаз) и значения емкостного тока защищаемого присоединения в установившемся режиме внешнего ОЗЗ. На рис. 1 показана осциллограмма тока нулевой последовательности 3I0 в переходном процессе ОЗЗ в одном из присоединений электрической сети, суммарный ток ОЗЗ в которой равен19 А. Осциллограмма соответствует повторному загоранию прерывистой дуги в сети, где заземляющие резисторы отсутствуют. Максимальное значение тока переходного процесса составило 138 А, амплитудное значение установившегося тока 3I0 равно 16 А. Обозначив отношение максимального тока к амплитуде установившегося как «Кmax», получаем для рассматриваемого случая Кмах = 8,62.
Установив в нейтраль питающего трансформатора заземляющий резистор сопротивлением 2 кОм (ток резистора при ОЗЗ равен 10 А, т.е. 0,53 от полного емкостного тока сети), получаем для того же присоединения Кмах = 1,3, т.е. Кmax снизился более чем в 6,5 раза. Увеличение сопротивления резистора приводит к росту Кmax (в пределах в рассматриваемом случае до 8,62). Если в сети установлено несколько заземляющих резисторов и по рассматриваемому присоединению при внешнем ОЗЗ протекает активный ток одного из них, то это приводит к некоторому снижению значения Кmax, поскольку установившийся ток 3I0 в рассматриваемом присоединении возрастает.
Из описанного ясно, что значение Кбр в рассматриваемом случае может быть принято ниже, чем при отсутствии заземляющих резисторов, причем степень снижения Кбр зависит от сопротивления резистора. В литературе описывается еще один способ заземления, предназначенный для обеспечения эффективной работы селективной защиты от замыканий на землю в сетях 6–10 кВ (рис. 2). В рассматриваемом случае нейтралеобразующий трансформатор не устанавливается.
При появлении в сети напряжения нулевой последовательности, свидетельствующего о том, что произошло замыкание на землю, специальным выключателем между каждой фазой и землей включается свой заземляющий резистор. При этом образуются активные токи замыкания на землю, пригодные для селективного выявления поврежденного присоединения.
Для ограничения перенапряжений, которые могут возникнуть в сети до включения заземляющих резисторов, предусматривается установка на шины ОПН. Их термическая стойкость должна быть обеспечена на время до включения заземляющих резисторов и выявления релейной защитой поврежденного присоединения. Сработав, релейная защита отключает поврежденное присоединение, после чего заземляющие резисторы отключаются. Заземляющие резисторы выполняются маломощными, теплопоглощающими, со временем термической стойкости порядка 10–20 секунд.

ПРИМЕР РАСПРЕДЕЛЕНИЯ ТОКОВ

На рис. 3 показано распределение токов в цепях схемы. При построении рисунка были приняты допущения о том, что:

- емкости фаз ЛЭП относительно земли многократно превышают емкости остальных элементов схемы;

- утечками через трансформаторы напряжения можно пренебречь;

- активный ток по изоляции фаз относительно земли прене­брежимо мал;

- сопротивления ЛЭП и обмоток трансформатора пренебрежимо малы.

На схеме рис. 3 не показаны коммутационные аппараты и ограничители перенапряжений. Здесь Тр – питающий трансформатор; ЛЭП1 – ЛЭП, на которой произошло замыкание фазы на землю; ЛЭП2 – неповрежденная ЛЭП (или группа таких линий); R1 – заземляющие резисторы.
Из рисунка видно, что активные токи заземляющих резисторов замыкаются через питающий трансформатор Тр и поврежденную фазу линии ЛЭП1. В результате по защите поврежденной ЛЭП протекает сумма активных токов резисторов неповрежденных фаз и емкостного тока неповрежденной ЛЭП. По защите неповрежденной ЛЭП протекает только емкостный ток этой ЛЭП.
Описанный выше способ резистивного заземления был реализован на трех подстанциях Ханты-Мансийских РЭС Нефтеюганских электрических сетей. Имеющийся к сегодняшнему дню опыт эксплуатации подтверждает высокую эффективность такого технического решения. В случае применения этой схемы, как показывают наши исследования, заземляющие резисторы также снижают значение kmax, а значит, и kбр. При этом для достижения одинакового эффекта сопротивления резисторов в схемах рис. 2, 3 следует принимать в 3 раза большими, чем при включении заземляющего резистора, например, в нейтраль силового трансформатора.

Рис. 1
Осциллограмма тока нулевой последовательности в переходном процессе однофазного замыкания на землю в сети 35 кВ

Рис. 2
Включение заземляющих резисторов между фазами и землей при возникновении замыкания на землю

Рис. 3
Распределение токов в цепях схемы

РЕКОМЕНДАЦИИ ПО РАСЧЕТНОМУ ЗНАЧЕНИЮ Кбр

Проведенные исследования позволяют сделать следующий вывод: использование заземляющих резисторов без нейтралеров приводит к возможности уменьшения значения Кбр. Применение нейтралеров заметно снижает этот эффект, в большинстве случаев практически сводя его к нулю.
В результате при включении заземляющих резисторов через нейтралеры значения коэффициента броска Кбр следует брать, как и для сети с изолированной нейтралью.
При включении заземляющих резисторов по описанным выше схемам без использования нейтралеров расчетные значения Кбр могут быть снижены. Если ток заземляющего резистора приблизительно равен суммарному емкостному току сети (как это рекомендуется для оптимального ограничения перенапряжений), значения коэффициентов броска могут быть приняты на уровне 1,2–1,3.

Если сопротивления заземляющих резисторов существенно больше емкостного сопротивления трех фаз сети (как это часто бывает при больших значениях емкостного тока), значение Кбр может быть либо взято таким же, как для сетей с изолированной нейтралью, либо определено после дополнительных расчетов токов переходного процесса ОЗЗ.
Одна из особенностей горения дуги в отечественных кабелях с бумажно-масляной изоляцией в том, что на начальной стадии ОЗЗ загорание дуги в таком кабеле приводит к разложению масляно-канифольной пропитки и выделению значительного количества газов, которые гасят возникшую дугу. Пока образовавшиеся газы не «ушли» в разные стороны от места дуги между слоями бумаги, дуга не горит. При этом из-за образовавшейся «паузы» в токе нулевой последовательности защита от ОЗЗ, имеющая выдержку времени, может отказать в срабатывании. Причина в том, что во время бестоковой паузы токовый орган возвращается в исходное состояние и орган выдержки времени, так и «не отсчитав» установленную выдержку времени, также возвращается в исходное состояние.
Для предотвращения таких отказов защиты от ОЗЗ в некоторых импортных защитах (а также в защите УЗЛ совместного производства Новосибирского государственного технического университета и ООО «ПНП БОЛИД») имеется опция запоминания факта запуска защиты. Если был «клевок» токового органа, то этот факт запоминается на время до 0,3 с и при повторном «клевке» защита работает на отключение. Для таких защит даже при наличии в сети заземляющего резистора рекомендуется принимать повышенное значение Кбр, например, равное 1,5.

ОБЛАСТЬ ПРИМЕНЕНИЯ НЕНАПРАВЛЕННЫХ ЗАЩИТ

В целом ненаправленные токовые защиты от ОЗЗ могут быть эффективны лишь в установках с большим количеством подключенных к секции присоединений, каждое из которых имеет малый емкостный ток. Тогда отстройка от этого тока в соответствии с (1) не приведет к недопустимому снижению чувствительности. Этот случай характерен, например, для цехов предприятий с большим количеством маломощных электродвигателей, включенных через короткие кабели.
Если в такой сети установлен дугогасящий реактор, то для обеспечения эффективного действия защиты от ОЗЗ целесообразно параллельно этому реактору включить заземляющий резистор, причем ток, протекающий по резистору при ОЗЗ, должен превышать уставку самой «грубой» защиты в 1,5–2 раза. В этом случае ненаправленные токовые защиты могут обеспечить необходимую селективность и высокую чувствительность при ОЗЗ.
Значительного повышения эффективности удается достичь при использовании токовых защит нулевой последовательности с относительным замером. Например, существует микропроцессорный терминал защиты, принцип действия которого основан на сравнении значений токов нулевой последовательности во всех присоединениях защищаемой секции сборных шин. Отстраивать ток срабатывания от емкостных токов присоединений не требуется. При отсутствии в сети дугогасящего реактора такая защита позволяет эффективно выявить поврежденное присоединение при ОЗЗ.

Оптимальные решения – простые решения

экспертное мнение

Сергей Титенков,
к.т.н., ОАО «ПО Элтехника

В большом количестве публикаций и учебных пособий указывается, что коэффициент броска в сетях с резистивным заземлением нейтрали может быть снижен в 2–2,5 раза. Это мнение ошибочно в случае выполнения заземления нейтрали с помощью маломощного трансформатора заземления нейтрали 63–100 кВА. По-моему, проблему величины коэффициента броска нужно решать таким простым способом, как использование небольшой выдержки по времени на уровне 0,02–0,04 с. За это время произойдет затухание переходных токов и учет коэффициента броска вообще не потребуется.
Мне могут возразить: «А как же срабатывание при перемежающихся замыканиях?». Ответ прост: необходимо выполнять резистивное заземление нейтрали с таким током, чтобы первый же пробой изоляции приводил к устойчивому замыканию. Это возможно при токе однофазного замыкания более 200 А. Предполагая возможные доводы, что значение тока слишком велико, хочу заметить: в США с таким током работают в сетях с высоковольтными электродвигателями.
Я не считаю оптимальным предложение автора статьи определять поврежденное присоединение с ОЗЗ включением трех резисторов на землю (рис. 2). Такое решение не снизит коэффициент броска. Срабатывание силового выключателя, подключающего резисторы по схеме, показанной на рисунке, требует времени порядка 0,1 с. За это время бросок емкостного тока возникнет и затухнет сам по себе. То есть эффективность предлагаемого способа как раз заключается в выдержке времени, создаваемой выключателем!
Резистивное заземление нейтрали наиболее эффективно, когда резистор постоянно подключен к нейтрали сети. В США, Канаде, Франции, Великобритании и многих других странах мира используется именно такое резистивное заземление нейтрали.
Думаю, не следует усложнять защиты от замыканий на землю направленностью и относительными замерами. Простые токовые защиты от однофазных замыканий при резистивном заземлении нейтрали и токе однофазного замыкания 200 А и более будут исключительно надежны, селективны и работоспособны в любых сетях 6-35 кВ. Оптимальные решения — простые решения.

Алексей Шалин, д.т.н.,

профессор кафедры электрических станций Новосибирского государственного технического университета

Простые решения — не всегда самые эффективные

Не нужно искусственно связывать два независимых аспекта обсуждаемой темы. Первый касается достоинств и недостатков заземления нейтрали через низкоомный резистор, а второй — коэффициента броска. Разделим эти два вопроса.
В России спроектировано и построено довольно много электрических сетей с заземлением нейтрали через высокоомный(300 Ом и выше) резистор. При расчете защиты от ОЗЗ в таких сетях у проектантов встает вопрос о перемежающихся дугах и связанных с такими ОЗЗ коэффициентах броска. Именно такой случай рассматривается в статье. Выдержка времени в 0,02–0,04 с не позволяет отстроиться от бросков емкостного тока в процессе прерывистых дуг. Приходится дополнительно отстраивать ток срабатывания защиты с помощью коэффициента броска.
Целесообразность заземления нейтралей сетей 6–35 кВ, имеющих в своем составе воздушные ЛЭП, через низкоомный резистор весьма сомнительна. Это объясняется тем, что довольно часто в месте падения провода на землю отмечается большое (от 200 Ом до нескольких килоом) сопротивление. В результате, несмотря на низкое сопротивление заземляющего резистора, ток в месте ОЗЗ невелик (в сети 10 кВ при переходном сопротивлении в 300 Ом и нулевом сопротивлении заземляющего резистора ток равен примерно 20 А). В результате об устойчивом горении дуги речь уже не идет. В таких условиях вполне возможны перемежающиеся дуги со всеми вытекающими последствиями.
В рассмотренном случае будут, как правило, неэффективны и ненаправленные токовые защиты от ОЗЗ. Практические внедрения, в которых я принимал участие, показали, что во многих случаях без чувствительных направленных защит обойтись не удается. Более подробно этот вопрос мы надеемся рассмотреть в следующем номере журнала.
Я не утверждаю также, что описанный в статье «альтернативный» способ заземления посредством включенных между фазами и землей резисторов является универсальным, пригодным во всех случаях. Но результаты налицо: используя всего одну ячейку КРУ и установив на нее сверху три небольших по величине резистора, мы смогли построить эффективную систему релейной защиты от ОЗЗ в конкретной энергосистеме. Было выявлено, что при реализации этого метода в сети с воздушными ЛЭП вполне возможны перемежающиеся дуги. И хорошая отстройка от броска емкостного тока при повторном зажигании дуги с помощью малой выдержки времени невозможна. Описанные же в статье эксперименты показали, что заземляющие резисторы действительно снизили бросок емкостного тока.
В завершение хотелось бы отметить, что и я, и Сергей Титенков, и, надеюсь, другие серьезно озабочены вопросом низкой эффективности многих видов эксплуатирующихся в России релейных защит, процент отказов в функционировании которых достигает 50–60%. И решать эту проблему необходимо силами всех специалистов, которые могут предложить реальные расчеты и подходы. При этом замечу, что простые решения не всегда являются самыми эффективными. Это подтверждается рядом примеров, приведенных в моей книге «Надежность и диагностика релейной защиты энергосистем».

ЧАСТЬ 6

Замыкания на землю в сетях 6–35 кВ
Направленные защиты. Особенности применения

ОБЛАСТИ ИСПОЛЬЗОВАНИЯ


Автор определил свою позицию по области применения ненаправленных токовых защит от замыканий на землю: это кабельные сети со значительным числом присоединений к каждой секции, причем каждое из этих присоединений характеризуется относительно малым емкостным током. Такой случай характерен, например, для внутризаводских сетей 6–10 кВ. Использование заземляющих резисторов существенно расширяет возможности эффективного использования ненаправленных токовых защит в таких сетях даже при наличии в сети дугогасящего реактора.
Сети с воздушными ЛЭП характеризуются тем, что при обрыве провода с падением его на землю однофазные замыкания (ОЗЗ) часто сопровождаются большими переходными сопротивлениями в месте повреждения . В этом случае ток замыкания определяется не только значением сопротивления заземляющего резистора, а в первую очередь значением переходного сопротивления. Ненаправленные токовые защиты становятся неэффективными – они перестают чувствовать повреждение уже при переходных сопротивлениях порядка нескольких сотен ом. Если в сети отсутствуют дугогасящие реакторы, то в рассматриваемом случае, по мнению автора, наиболее эффективны направленные защиты, реагирующие на токи и напряжения промышленной частоты.
Направленные защиты могут быть полезны также при защите ответственных синхронных двигателей, генераторов и некоторых других силовых элементов.
Однако при рассмотрении этого класса защит возникает существенная трудность: известно значительное количество разновидностей защит от ОЗЗ, отличающихся принципом действия и основными характеристиками, но до сих пор отсутствует (по крайней мере, в отечественной литературе) какая бы то ни было классификация разновидностей защит внутри класса «направленные защиты от ОЗЗ». Ниже под направленными защитами от ОЗЗ будем понимать такие, которые реагируют на ток, напряжение нулевой последовательности и фазовый угол между ними.

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ЗАЩИТ

В РЕЗИСТИВНО-ЗАЗЕМЛЕННЫХ СЕТЯХ


Пока в сетях не появились заземляющие резисторы, отсутствие данных, например, по фазовым характеристикам защит, не являлось проблемой. При любом ОЗЗ ток в защите был сдвинут по углу относительно напряжения нулевой последовательности примерно на 90 электрических градусов либо в сторону опережения, либо в сторону отставания. Для проектирования защиты достаточно было знать, как она ведет себя в этих двух случаях.
При установке же в сетях заземляющих резисторов угол тока нулевой последовательности в защите поврежденной линии может изменяться в широких пределах. При этом в значительном диапазоне может изменяться и рабочий сигнал, а с ним – чувствительность защиты. В разных типах защит это происходит неодинаково, но в доступных специалистам источниках изготовители часто не приводят информацию о виде «фазовой характеристики» конкретного устройства и зависимости рабочего сигнала от значения переходного сопротивления в месте ОЗЗ (т.е. от значения подведенного к защите напряжения нулевой последовательности). А без этой информации защиту невозможно грамотно спроектировать.
На рис. 1 приведена схема сети, на примере которой рассмотрим некоторые особенности направленных токовых защит в сетях с резистивным заземлением нейтрали. На рис. 2 показано токораспределение при ОЗЗ в рассматриваемой сети. Силовой питающий трансформатор на схеме замещения не приведен.

ВЛИЯНИЕ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ НА ВЕЛИЧИНЫ И ФАЗЫ ТОКОВ

Первый вопрос, который обычно возникает при анализе поведения направленных защит: как влияет переходное сопротивление в месте ОЗЗ на величины и фазы токов, ощущаемых установленными в сети защитами?
Это сопротивление может оказать значительное влияние на выбор уставок защиты, реагирующей на напряжение нулевой последовательности.
Рассмотрим влияние переходного сопротивления на примере схемы по рис. 2, где эквивалентное сопротивление всей сети определится следующим образом:

, (1)
где Ci – суммарная емкость трех фаз i-го элемента схемы;
n – общее число элементов.

Tок в месте замыкания на землю равен:

, (2)


где Uф - напряжение повредившейся фазы до ОЗЗ;
RП– переходное сопротивление в месте ОЗЗ.

Как видно из рис. 3, появление переходного сопротивления в месте ОЗЗ приводит к уменьшению напряжения нулевой последовательности на сборных шинах и тока промышленной частоты, протекающего в месте ОЗЗ по сравнению с металлическим замыканием, поскольку RП оказывается последовательно включенным с эквивалентным сопротивлением сети . Степень снижения напряжения нулевой последовательности по сравнению с металлическим ОЗЗ рекомендуется характеризовать коэффициентом полноты замыкания .

Его предлагается определять по следующему выражению:

, (3)

где RП - переходное сопротивление в месте ЗНЗ;
С – суммарная емкость одной фазы сети;

– комплексное сопротивление, через которое заземляется нейтраль;
RИЗ – сопротивление фазной изоляции.

При больших значениях переходного сопротивления в месте ОЗЗ (порядка одного или нескольких килоом, что вполне реально на воздушных ЛЭП), ток, протекающий через защиту поврежденной линии, сильно уменьшится, что может привести к ее отказу в срабатывании. В первую очередь это относится к ненаправленным токовым защитам, имеющим довольно высокий ток срабатывания, с запасом отстроенный от собственного емкостного тока защищаемого присоединения.
Направленная токовая защита нулевой последовательности обычно гораздо чувствительнее ненаправленной, поскольку её ток срабатывания отстраивается не от собственного емкостного тока линии, а лишь от тока небаланса. Однако при возникновении больших переходных сопротивлений в месте ОЗЗ характеристики некоторых разновидностей защиты могут стать вначале нестабильными из-за снижения напряжения нулевой последовательности (сужается область срабатывания), а затем защита и вовсе откажет.
Величину напряжения основной гармоники нулевой последовательности на шинах при ОЗЗ через переходное сопротивление можно определить как:

, (4)

Из (4) видно, что с ростом переходного сопротивления уменьшается величина и изменяется фаза напряжения нулевой последовательности относительно фазного напряжения . А поскольку является источником токов нулевой последовательности в неповрежденных линиях и в цепи заземляющего резистора, то одновременно с ним уменьшаются и токи нулевой последовательности в этих присоединениях.

Рис. 1
Схема сети


Рис. 2
Токораспределение при ОЗЗ в сети при наличии заземляющего резистора
С1, С2, С3– суммарные емкости относительно земли трех фаз линий Л-1, Л-2, Л-3 соответственно;
R – сопротивление заземляющего резистора;
RП– переходное сопротивление в месте ОЗЗ;

– фазная ЭДС в месте ОЗЗ.


Рис. 3
Расчетная схема при появлении переходного сопротивления в месте ОЗЗ

Отношение напряжения нулевой последовательности на шинах к току нулевой последовательности в любом из присоединений равняется сопротивлению данного присоединения токам нулевой последовательности. Поскольку сопротивления емкостей и заземляющего резистора в процессе ОЗЗ не меняются, то при изменении величины переходного сопротивления останутся неизменными как углы между и каждого присоединения по соответствующей синусоидальной составляющей сигнала,

так и отношение

, (5)

а также обратное отношение этих величин. Отсюда ясно, что фаза тока в любой неповрежденной линии относительно напряжения не зависит от переходного сопротивления RП. Ток в поврежденной линии равен сумме токов резистора и неповрежденных присоединений, значит, и он не меняет своего угла относительно.
На основании описанного можно заключить, что при изменении переходного сопротивления области срабатывания направленных токовых защит нулевой последовательности не изменятся.
Описанная закономерность может измениться, если на сборных шинах будут установлены ограничители перенапряжений или разрядники, срабатывающие при ОЗЗ. Однако такой выбор характеристик ОПН, очевидно, следует считать неправильным, т.к. это приведет к их быстрому выходу из строя при ОЗЗ.
Необходимо отметить, что при очень малых значениях сигналов даже направленная защита все-таки работать не будет. Это обусловлено тем, что для отстройки от небалансов должны быть предусмотрены пусковые органы по току и напряжению нулевой последовательности.


Рис. 4
Фазовая характеристика защиты от ОЗЗ


Рис. 5
Фазовые характеристики защиты

Изменения фазовых соотношений сигналов


Второй вопрос звучит следующим образом: как изменяются фазовые соотношения сигналов в направленных защитах при изменении места расположения точки ОЗЗ и режима сети?

Из рис. 2 видно, что ток , ощущаемый защитой поврежденного присоединения, равен

, (6)

т.е. меньше суммарного тока ОЗЗ на величину емкостного тока поврежденной линии. Если сопротивление резистора выбрано таким образом, что в нормальном режиме сети активный ток резистора равен полному емкостному току сети, т.е. , где ICΣ=IR, то угол тока по отношению к напряжению близок к 45 электрическим градусам (он может несколько отличаться от 45 градусов, например, из-за активных токов утечки по изоляции). Не будем пока рассматривать вопрос относительно того, опережающий это угол или отстающий, поскольку у специалистов нет единого мнения по этому поводу. Рассмотрим этот вопрос подробнее в следующей статье.
В случае если поврежденная линия Л-1 имеет малую длину и небольшой по сравнению с емкостный ток, угол тока по отношению к будет близок к 45 электрическим градусам. Если же емкостный ток линии Л-1 близок в рассматриваемом режиме к суммарному емкостному току сети , то угол тока по отношению к напряжению близок к 0 электрических градусов. Возможны и промежуточные случаи, т.е. при ICΣ=IR угол тока в защите поврежденной линии может изменяться в пределах от 45 до 0 электрических градусов относительно напряжения. Если , то диапазон изменения соответствующего угла изменится.
Фазовый угол тока в защите неповрежденной линии не зависит от тока заземляющего резистора и остается практически неизменным при любых внешних ОЗЗ.
На рис. 4 приведена фазовая характеристика одной из защиты. По вертикальной оси отложен параметр срабатывания (в рассматриваемом случае – ток или ток в защите неповрежденной линии), по горизонтальной – фазовый угол между током и напряжением . Минимальному току срабатывания соответствует «характеристический угол» φхар.
Видно, что при изменении фазового угла между током и напряжением в пределах от –45 до 0 электрических градусов ток срабатывания защиты может сильно изменяться.
Если ток срабатывания защиты в точке А, соответствующей характеристическому углу φхар (равному, например, –45 электрическим градусам), обозначить через IСЗ.MIN, то при нулевом угле между током и напряжением ток срабатывания может увеличиться относительно IСЗ.MIN в несколько раз.
В результате при отстройке IСЗ.MIN от небаланса получаем значительное

загрубление защиты при отклонении от характеристического угла φхар. Если этого не учесть при проектировании, защита может отказать при повреждении на защищаемой линии.
Из рассмотренного случая очевидно, что характеристику по рис. 4 в резистивно-заземленных сетях целесообразно использовать при φхар=0, т.е. настроить защиту на активный ток нулевой последовательности, протекающий в место ОЗЗ от заземляющего резистора. При этом емкостные токи, протекающие по защите, практически не будут оказывать влияния на ее поведение. Защита, реагирующая только на активную составляющую тока нулевой последовательности, будет по определению обладать высокой селективностью в таких сетях.
При установке характеристического угла φхар≠0 отмеченную на рис. 4 особенность необходимо учитывать при проектировании защиты. Подробнее об этом будет сказано в следующих статьях.
На рис. 5 показаны более эффективные фазовые характеристики направленных защит от ОЗЗ. Такие характеристики имеют защиты УЗЛ-2 (производства Новосибирского государственного технического университета), ЗЗН (производства ЧЭАЗ), второго варианта микропроцессорного терминала Sepam 1000+ серии 40 Merlin Gerin (фирма Schneider Electric) и т.д.
У рассматриваемых устройств отклонение тока от характеристического угла φхар, соответствующего середине зоны срабатывания, не приводит к заметному увеличению тока срабатывания. Однако при появлении переходного сопротивления в месте ОЗЗ в некоторых защитах, имеющих характеристики по рис. 5, происходит сужение зоны срабатывания, а при низких абсолютных значениях коэффициента полноты замыкания , определяемого в соответствии с (3), может увеличиться IСЗ.MIN, в результате чего характеристика «приподнимется». На рис. 5 зависимость 1 соответствует металлическому ОЗЗ, 2 – появлению определенного переходного сопротивления, а 3 – значительному по величине переходному сопротивлению, большему, чем в случае 2.

Разновидности направленных защит от ОЗЗ
С точки зрения принципов действия, перечисленные ниже типы защит, видимо, следовало бы поделить минимум на четыре принципиально разные группы:

классические направленные токовые;

направленные с «ненулевой» уставкой по мощности срабатывания;

фазочувствительные;

дифференциальные.

Но, условившись, как было отмечено выше, под направленными защитами от ОЗЗ понимать такие, которые реагируют на вектор тока нулевой последовательности промышленной частоты, вектор напряжения нулевой последовательности и угол между ними, можем перечислить основные разновидности таких защит:

«классические» направленные токовые первого типа (имеющие характеристики в соответствии с рис. 5);

направленные второго типа (их характеристики соответствуют рис. 4);

с компенсацией собственного емкостного тока защищаемого присоединения ;

реагирующие на сопротивление цепей нулевой последовательности;

реагирующие на проводимость цепей нулевой последовательности.

использующие в своем алгоритме интеграл или другие подобные преобразования;

защиты с токовым поляризующим сигналом (например, использующие вместо напряжения ток в цепи заземляющего резистора;

централизованные направленные защиты и т.д.

Близки к направленным по принципам исполнения продольные и поперечные дифференциальные защиты нулевой последовательности от ОЗЗ (например, направленная поперечная дифференциальная защита нулевой последовательности). На российском рынке в настоящее время представлены следующие разновидности направленных токовых защит от ОЗЗ, пригодных для применения в резистивно-заземленных сетях:

реле типа ЗЗН и БЭМП производства «ЧЭАЗ»;

микропроцессорное устройство БМРЗ «НТЦ Механотроника»;

реле защиты типа ЗЕРО, производимое компанией «Объединенная энергия»;

терминал защиты SEPAM типа S41 (код ANSI 67N/67NC) фирмы Schneider Electric и аналогичный терминал серии 80;

защиты серии MiCOM моделей Р141, Р142 и Р143 фирмы AREVA;

защиты серии SPACOM, например, SPAC-800 фирмы «АББ Реле-Чебоксары»;

микропроцессорные терминалы SIPROTEC 7SJ62 и 7SJ63 фирмы SIEMENS;

защита нулевой последовательности типа УЗЛ-2 совместного производства Новосибирского государственного технического университета и ООО «ПНП БОЛИД» и т.д.

Большинство этих защит относится к первому и второму типам по приведенной выше классификации. За рубежом применяются и другие типы защит.
Следует отметить, что чрезвычайно остро применительно ко всем видам направленных защит стоит вопрос выбора их уставок. До сих пор ни в отечественной, ни в зарубежной печати нет не только методики выбора уставок, но и классификации небалансов, способных привести к их неправильному действию.

Часть 7

Замыкания на землю в сетях 6–35 кВ
Влияние электрической дуги на направленные защиты.

ФИЗИЧЕСКАЯ РЕАЛИЗАЦИЯ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ В МЕСТЕ ОЗЗ

Переходное сопротивление Rп не влияет на фазовый угол между током I0 и напряжением U0 нулевой последовательности как в неповрежденной, так и в поврежденной линии, т.е. не искажает основных фазовых соотношений, на которые реагирует направленная токовая защита нулевой последовательности. Однако появление Rп снижает значения I0 и U0 и может по этой причине привести к отказу защиты в срабатывании.
Описанное переходное сопротивление Rп существенную роль играет лишь на воздушных ЛЭП, где применительно к компенсированным и резистивно-заземленным сетям складывается из сопротивлений следующих основных элементов:

заземления опоры с неисправным изолятором;

цепи протекания «обратного» тока ОЗЗ по земле от места замыкания до нейтрали источника питания;

заземляющего устройства на питающей подстанции.

Проведенные эксперименты показали, что при повреждении линейного изолятора суммарное значение переходного сопротивления Rп на частоте 50 Гц в некоторых случаях достигает 100–200 Ом. В основном оно носит активный характер и может оказать существенное влияние на переходные процессы ОЗЗ и снизить установившееся значение тока замыкания на землю.

При падении на землю оборвавшегося провода вместо первой указанной выше составляющей проявляются сопротивления:

предмета, на который упал провод (слой снега, льда, упавших листьев, ветка дерева и т.д.) и через который осуществляется контакт с землей;

полусферы «растекания тока» в месте контакта с землей.

Эти сопротивления сильно зависят от удельного сопротивления грунта, вида находящихся на поверхности земли предметов, на которые упал провод, погодных условий (дождь, снег), времени года и т.д.
В одном из экспериментов летом при падении провода на сухой песок отмечалось переходное сопротивление в месте ОЗЗ порядка 5–7 кОм. Зимой при падении провода на обледеневшую землю или в сугроб значение Rп может увеличиться в несколько раз, что и подтверждалось рядом экспериментов с участием автора настоящей статьи.
Ясно, что наличие в цепи протекания токов ОЗЗ такого большого по величине переходного сопротивления может привести к отказу защиты от ОЗЗ. В литературе предлагается совмещать защиту нулевой последовательности (например, направленную токовую) со специальной защитой от обрыва фазного провода, например, реагирующей на отношение I2 / I1, где I2– значение тока обратной последовательности в защищаемой линии; I1 – значение тока прямой последовательности. При этом каждая из разновидностей защит будет реагировать на «свою» часть повреждений. Чувствительная направленная защита нулевой последовательности обеспечит защиту воздушной ЛЭП при значениях Rп до 2–3 кОм, защита от обрывов – при больших значениях переходного сопротивления. Она же сработает, например, при обрыве «шлейфа», соединяющего между собой два пролета воздушной ЛЭП. Обрыв шлейфа в ветреную погоду, приводящий к его кратковременным соприкосновениям с опорой (что иногда случается на практике), без такой защиты едва ли удастся быстро выявить.

ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ НА ПАРАМЕТРЫ ПРОЦЕССОВ ПРИ ОЗЗ

Электрическая дуга также является своеобразным «переходным элементом» в месте ОЗЗ. Однако попытки учесть дугу во многих случаях не венчаются успехом.

1.Устойчивая дуга

Горящая в месте ОЗЗ устойчивая дуга обычно является мощным источником высокочастотных составляющих в напряжении U0 и токе I0. Отмечается, что в токе это влияние становится настолько заметным, что может привести, например, к излишнему срабатыванию защит неповрежденных линий. Для предотвращения таких срабатываний в современных устройствах защиты от ОЗЗ предусматриваются специальные гармонические фильтры.

2. Перемежающаяся дуга

Перемежающаяся дуга может возникать при ОЗЗ как на воздушных, так и на кабельных ЛЭП, но для кабельных линий она более характерна. По некоторым данным до 80% замыканий на кабельных линиях сопровождаются перемежающейся дугой. На воздушных ЛЭП таких замыканий в несколько раз меньше.
Анализом токов при ОЗЗ, сопровождающихся перемежающейся дугой, занимался ряд авторов. Однако по ряду причин (одна из них – низкое качество осциллографической аппаратуры на период выполнения работы) эти исследования велись в основном на математических моделях, хотя и с использованием имеющихся экспериментальных данных. К тому же авторы не ставили перед собой задачи исследовать поведение направленных токовых защит нулевой последовательности при наличии перемежающейся дуги. В связи с этим в настоящее время многие вопросы, связанные с поведением таких защит при дуговых замыканиях, так и остались невыясненными.
На рис. 1 показаны осциллограммы первичного и вторичного тока I0(t), полученные в процессе натурных экспериментов, на рис. 2 – осциллограммы напряжения U0(t) и тока I0(t).

Рис. 1. Осциллограммы первичного и вторичного тока I0(t), полученные в процессе натурных экспериментов

Рис. 2. Осциллограммы напряжения U0(t) и тока I0(t)

Из рисунков видно, что при дуговом замыкании:

осциллограмма напряжения содержит гораздо меньше высокочастотных составляющих, её проще «записать» и проанализировать;

ток I0(t) при ОЗЗ может на какое-то время прерываться, а затем дуга загорается вновь;

этот ток содержит большое количество высокочастотных составляющих;

сигналы при перемежающейся дуге могут иметь разный вид (в действительности это многообразие весьма велико).

Как отмечалось выше, в настоящее время процессы в сети при ОЗЗ, сопровождающихся перемежающимися дугами, и виды сигналов, поступающих при этом на направленную токовую защиту, недостаточно изучены.

Это объясняется рядом технических причин (если не говорить о чрезвычайно скудном финансировании такого рода работ):

многообразием разновидностей перемежающихся и прерывистых дуг. Вид дуги зависит, в частности, от того, где она горит – «открытая» дуга на воздухе, «закрытая» (например, в кабеле на начальной стадии ОЗЗ), от стадии процесса (особенно это заметно в кабеле), от режима заземления нейтрали сети и т.д.;

отсутствием достаточно совершенной теории, описывающей мгновенные значения токов и напряжений нулевой последовательности при различных видах перемежающихся дуг в сетях 6–35 кВ;

низким качеством кабельных трансформаторов тока, большим разбросом их характеристик и слабой проработанностью моделей измерительных трансформаторов и фильтров тока нулевой последовательности, а также трансформаторов напряжения, работающих в режимах перемежающихся дуговых замыканий;

сложностью получения качественных осциллограмм токов при натурных экспериментах с перемежающимися дугами (на рис. 1 видно, что некоторые пики токовых импульсов «обрезаны» из-за невысокого качества аналого-цифрового преобразователя осциллографа);

терминологическими трудностями (до сих пор среди специалистов нет единого мнения, какую дугу можно назвать перемежающейся и чем она отличается от прерывистой);

отсутствием теоретической базы, позволяющей адекватно обработать полученные в эксперименте сигналы (выделить гармонические составляющие, оценить основные параметры дуги, влияющие на поведение релейной защиты), и т.д.

Многообразие алгоритмов обработки сигналов I0(t) и U0(t) в различных устройствах защиты и нежелание разработчиков защит давать подробную информацию по этим алгоритмам дополнительно усложняют задачу.
Тем не менее, некоторые закономерности, влияющие на работу направленных защит от ОЗЗ, можно проанализировать.
Условимся перемежающимися дугами называть такие, в которых бестоковые паузы сравнительно коротки. За время паузы потенциал нейтрали не успевает снизиться до значения, близкого к нулю. При повторных пробоях возможна эскалация перенапряжений. Прерывистыми дугами будем называть такие, бестоковые паузы в которых велики, например, имеют продолжительность до 10 периодов промышленной частоты и более. К концу паузы потенциал нейтрали симметричной сети можно считать равным нулю.
При таких условиях осциллограммы, изображенные на рис.1, 2, соответствуют процессам с перемежающейся дугой. Очевидно, что представленные осциллограммы далеко не исчерпывают всего разнообразия перемежающихся дуг. Результаты описанных ниже исследований также не претендуют на широту обобщения, а являются скорее примерами, иллюстрирующими определенные тенденции.

Рис. 3. Спектральный состав тока нулевой последовательности в сети при ОЗЗ, сопровождающемся перемежающейся дугой

Рис. 4. Напряжение и ток нулевой последовательности при металлическом «прерывистом» ОЗЗ в сети при наличии заземляющего резистора

Рис. 5. Осциллограммы напряжений Uс(t) в фазе С, Ua(t)в фазе А и Un(t) – напряжения на нейтрали в процессе отключения ОЗЗ в фазе А

Рис. 6. Зависимость фазового угла от временив процессе замыкания на землю, сопровождающегося перемежающейся дугой

СПЕКТРАЛЬНЫЙ СОСТАВ ТОКА I0(t)

На рис. 3 приведен спектральный состав тока I0(t), полученный магистром НГТУ Касяном В.М. в процессе обработки одного из натурных экспериментов.

Из рисунка видны некоторые интересные особенности:

ток I0(t) содержит высокочастотные составляющие вплоть до 20-й гармоники и выше;

в спектре содержится большое количество «интергармоник» (т.е. существуют не только гармонические составляющие с частотой, кратной 50 Гц, но и с множеством промежуточных частот (практически – непрерывный спектр);

при перемежающейся дуге в токе I0(t) в значительном количестве присутствуют субгармоники (с частотой меньше 50 Гц).

Последнюю особенность необходимо учитывать при разработке гармонических фильтров, повсеместно используемых, например, в направленных токовых защитах от ОЗЗ. При выделении основной гармоники следует применять не фильтры-пробки высших частот, как это иногда делается, а полосовые фильтры. Кроме того, наличие в сети субгармоник с частотами, лежащими в пределах 15–25 Гц, может привести к неселективной работе некоторых защит от ОЗЗ, выполненных на наложенном токе 16,7–25 Гц. Это, по-видимому, относится не только к защитам линий, но и, например, к защитам от ОЗЗ генераторов, если эти генераторы работают на сборные шины, гальванически соединенные с сетью, и имеют защиту от ОЗЗ с наложенным током соответствующей частоты. Возникающие при ОЗЗ синусоидальные составляющие с частотой, например, 25 Гц могут иметь произвольные углы относительно «наложенных» токов той же частоты, вызванных искусственным источником, и различные амплитуды. Наложение одних сигналов на другие, если не предпринять соответствующих мер, может привести к неселективному действию защит.

ИСКАЖЕНИЕ ФАЗОВЫХ УГЛОВ МЕЖДУ I0(t) И U0(t) В ПЕРЕХОДНЫХ РЕЖИМАХ

Из рис. 1, 2 видно, что при перемежающейся дуге ток может прерываться и снова начинать течь по несколько раз за период промышленной частоты. Моменты «зажигания» и погасания дуги являются случайными величинами, что, в частности, и является причиной появления в токе интергармоник. Кроме того, в переходных процессах, связанных с зажиганием и погасанием дуги, искажаются фазовые соотношения между величинами I0(t) и U0(t).

Пример 1.

На рис. 4 приведены осциллограммы напряжения U0(t) (кривая с большей амплитудой) и тока I0(t) в режиме дугового ОЗЗ в резистивно-заземленной сети, полученные на модели. Осциллограммы построены для случая, когда суммарный ток через заземляющие резисторы в сети равнялся примерно 70% от емкостного тока. Дугогасящий реактор отсутствовал.
Видна интересная особенность процесса ОЗЗ, связанная с взаимным отношением мгновенных значений величин тока I0(t) и напряжения U0(t). Иногда при обсуждении процессов, возникающих в сети при ОЗЗ, звучит не совсем верное утверждение о том, что при отсутствии тока I0(t) не должно быть и напряжения U0(t). Это справедливо перед возникновением ОЗЗ, когда сеть работает в симметричном режиме и смещение нейтрали отсутствует. В процессе же ОЗЗ это условие не выполняется.
На рис. 4 видно, что «впервые» ток I0(t) и напряжение U0(t) действительно появляются в один и тот же момент времени (при появления замыкания на землю). В этот момент угловой сдвиг между ними отсутствует. Через некоторое время процесс стабилизируется и угол между напряжением U0(t) и соответствующим током I0(t) (например, измеренный по моментам перехода этих величин через ноль) становится постоянным. Если измерить фазовый угол между первыми гармониками сигналов I0(t) и U0(t), то за счет описанного выше он несколько приблизится к нулю. Степень влияния описанного эффекта на фазовый угол между входными сигналами направленной защиты от ОЗЗ будет, в частности, зависеть от длительности промежутка времени, в течение которого дуга не гасла.
Однако теперь при погасании дуги (ток на осциллограмме в течение определенного промежутка времени равен нулю) напряжение U0(t) нулю не равно. Это и понятно: емкость поврежденной фазы не успевает зарядиться до фазного напряжения и нейтраль сети еще некоторое время остается смещенной.

Пример 2.

Особенно отчетливо это видно на рис. 5, где приведены осциллограммы напряжений в фазах А (Ua) и С (Uc), а также напряжения на нейтрали сети Un в процессе отключения ОЗЗ в фазе А, полученные автором на модели для одной из реальных систем. Заземляющий резистор отсутствовал. Емкостный ток при ОЗЗ – порядка 19 А. Из рисунка видно, что после того, как ток в дуге прервался и дуга погасла, напряжение Un(t), уменьшаясь по экспоненте, ещё длительное время продолжает существовать.
В процессе ОЗЗ напряжение на нейтрали равняется – ea(t), где ea(t) – ЭДС поврежденной фазы. После отключения ОЗЗ напряжение на нейтрали Un(t) по экспоненте приближается к нулю. Амплитуда напряжения Uс(t) в процессе ОЗЗ равна амплитуды фазного напряжения, угол между Un(t) и Uс(t) равен 30 электрическим градусам. Высшие гармонические составляющие в напряжениях в рассматриваемом случае практически отсутствовали. После отключения ОЗЗ напряжение на нейтрали, не меняя своего знака, уменьшается по экспоненте:

, (1)

где Um– напряжение на нейтрали в момент погасания дуги;

t – текущее время;
R – результирующее сопротивление активных утечек в сети и заземляющего резистора;
С – общая трехфазная емкость сети.


Повторного загорания дуги после её погасания в случае, которому соответствует рис. 5, не произошло. Максимальные значения напряжений фаз относительно земли возникают сразу же после погасания дуги и имеют отрицательный знак.
Моменты повторного пробоя промежутка и зажигания дуги – случайны, ток при этом начинает возрастать с нуля (в сторону положительного или отрицательного полупериода), но напряжение нулевой последовательности (напряжение на нейтрали) в момент пробоя уже не равно нулю. Из рис. 4 видно, что пробои (на рисунке – повторные) часто сопровождаются значительными высокочастотными составляющими токов и

иногда – напряжений (токи разряда емкости поврежденной фазы и дозаряда емкостей «здоровых» фаз). Эти «свободные» высокочастотные составляющие токов играют большую роль в процессе загорания и погасания дуги.
В большинстве направленных защит от ОЗЗ в качестве входных рабочих сигналов используются составляющие 50 Гц I0(t) и U0(t). Фазовый угол между этими сигналами зависит, в частности, от моментов зажигания и погасания дуги, а также от значений Un(t) в эти моменты времени. В результате, например, в токе I0(t) при наличии в месте ОЗЗ перемежающейся дуги имеются две основные составляющие:

вынужденная, имеющая частоту 50 Гц;

свободная, содержащая составляющие как минимум двух высоких частот (разряда и дозаряда фазных емкостей).

Поведение направленной токовой защиты от ОЗЗ определяется тем, в какой степени проявляется в выделенной в защите токовой составляющей 50 Гц сигнала I0(t) первая из указанных выше величин. Вторую, высокочастотную составляющую в токовом сигнале рассматриваемых защит следует считать «шумом», искажающим поведение защиты. Аналогична ситуация с сигналом U0(t) с той разницей, что он искажен в меньшей степени (см. рис. 1, 2).

Пример 3.

Проведенные в НГТУ магистром Касяном В.М. исследования показали, что в процессе ОЗЗ, сопровождающегося перемежающейся дугой, фазовый угол между составляющими 50 Гц I0(t) и U0(t) может существенно изменяться. На рис. 6 показана одна из таких зависимостей, полученная на основании результатов натурного эксперимента. По вертикальной оси здесь изображен фазовый угол между составляющими 50 Гц I0(t) и U0(t), поступающими на защиту, а по горизонтальной оси – время. Начальная часть зависимости на рис. 6 соответствует «металлическому» ОЗЗ, т.е. замыканию без переходного сопротивления. Затем возникла перемежающаяся дуга, и фазовый угол стал меняться случайным образом (в соответствии со случайными моментами загорания и погасания дуги). Рис. 6 соответствует промежутку времени чуть больше 0,2 секунды. В процессе ОЗЗ фазовый угол менялся в некоторых случаях на несколько десятков электрических градусов от своего начального значения, его математическое ожидание отклонялось в сторону более активных токов примерно на 15–20 градусов. Аналогична зависимость амплитуды составляющей 50 Гц токового сигнала от времени. В процессе ОЗЗ амплитуда также может существенно изменяться.

ВЫВОДЫ

Очевидно, что изучение процессов ОЗЗ, сопровождающихся перемежающейся дугой, с точки зрения поведения направленных защит ещё только начинается, предстоит провести множество экспериментов и обобщить их результаты. Однако на основании имеющихся данных можно сделать следующие выводы:

фазовый угол между составляющими 50 Гц в процессе ОЗЗ, сопровождающегося перемежающейся дугой, может изменяться в широких пределах, что существенно усложняет задачу, поставленную перед защитой;

мгновенно действующие направленные защиты, судя по результатам проведенных исследований, имеют тенденцию к неселективным срабатываниям при внешних ОЗЗ и к отказам в срабатывании при повреждениях на защищаемой линии;

на достаточно продолжительном промежутке времени (порядка нескольких десятых долей секунды) математическое ожидание этого угла для рассмотренных случаев оставалось сравнительно постоянным и отклонялось от аналогичного значения при металлическом ОЗЗ примерно на 15–20 электрических градусов в сторону более активных токов;

меняется во времени также и амплитуда входного токового сигнала защиты;

для обеспечения стабильности поведения направленных защит от ОЗЗ их рабочий сигнал должен усредняться (интегрироваться) на достаточно большом промежутке времени (порядка нескольких десятых долей секунды); при этом сама защита должна выполняться с выдержкой времени;

фазовая характеристика направленной защиты должна быть рассчитана на то, чтобы обеспечивать её селективное действие как при «металлических» ОЗЗ, так и при дуговых, сопровождающихся перемежающейся дугой.

Часть 8

Замыкания на землю в сетях 6–35 кВ
Небалансы.

Ранее были перечислены разновидности направленных защит от однофазных замыканий на землю (ОЗЗ) в сетях 6–35 кВ, и показано, как могут изменяться основные параметры рабочих сигналов, поступающих на защиту при перемежающихся дугах. Не следует делать вывод о принципиальной неработоспособности направленных защит в режимах с перемежающимися дугами. Если рабочие сигналы интегрировать в течение нескольких десятых долей секунды и «запоминать» факт запуска защиты на время возможной бестоковой паузы, то на основе рассматриваемого принципа вполне можно построить эффективные защиты от ОЗЗ.
Это подтверждает опыт эксплуатации нескольких сотен устройств направленной токовой защиты от ОЗЗ, разработанной одним из авторов настоящей статьи и установленной в некоторых энергосистемах России. Как производственные испытания с имитацией перемежающейся дуги, так и опытная эксплуатация защит дали положительные результаты.
Международный опыт эксплуатации направленных защит линий от ОЗЗ также подтвердил их эффективность, но некоторые разновидности таких защит, по признанию самих разработчиков и изготовителей, а также по данным эксплуатации, ведут себя неудовлетворительно при ОЗЗ с перемежающимися дугами.
Простейшие разновидности направленных токовых защит от ОЗЗ эксплуатируются в России уже в течение десятков лет. Однако до сих пор отсутствуют методики расчета их уставок, что сильно усложняет труд проектантов и вызывает сомнение в возможности эффективной работы защит в первые годы после введения их в работу до тех пор, пока необходимые уставки не будут найдены опытным путем в процессе эксплуатации. Этот материал направлен на решение этого вопроса.

ОГРАНИЧЕНИЯ ПО ЧУВСТВИТЕЛЬНОСТИ И БЫСТРОДЕЙСТВИЮ ЗАЩИТ

Многие разработчики направленных защит от ОЗЗ в своих рекламных материалах указывают в качестве возможных уставок самые малые токи и напряжения срабатывания, которые можно реализовать на их изделиях в лабораторных условиях. Речь иногда идет о первичном токе срабатывания порядка 0,2–0,3 А. В некоторых случаях рекомендуется использовать мгновенно действующие защиты, даже если в этом нет необходимости. Попытки воспользоваться такими рекомендациями на практике часто приводят к неселективным срабатываниям защит.
Для этого есть три основные причины.

1. В большинстве случаев в реальных сетях, даже при отсутствии ОЗЗ, по присоединениям постоянно или периодически протекают токи нулевой последовательности (небалансы), вызванные описанными ниже причинами.
Практические попытки многих специалистов измерить значения этих токов в процессе эксплуатации часто оканчиваются неудачей из-за неправильно выбранных приборов, замера небалансов не в тех режимах, когда они максимальны, и т.д.


Первый случай. Для замера токов небаланса используются чувствительные миллиамперметры, имеющие большое входное сопротивление (например, сотни Ом). В результате включения такого прибора в цепь вторичной обмотки трансформатора тока нулевой последовательности (ТТНП) ток в его цепи становится близким к нулю, а после возвращения схемы в исходное состояние вновь возрастает до прежнего значения. Небаланс как бы прячется, а потом появляется вновь, готовый привести к неселективному действию защиты.
Второй случай. Замеры небалансов выполнены корректно, полученные значения зафиксированы. Через несколько часов в «смежной» сети, электрически отделенной от рассматриваемой, возникает ОЗЗ и через межцепные емкости двухцепных линий (реже – через межобмоточные емкости питающих трансформаторов) напряжение нулевой последовательности поступает в рассматриваемую сеть, вызывая в ней повышенные токи небаланса. Это также может привести к неселективному срабатыванию защит.


2. Измерительные трансформаторы тока нулевой последовательности (в меньшей степени – трансформаторы напряжения) в области малых сигналов могут дать весьма большие погрешности.
В некоторых экспериментах при первичных токах отечественных ТТНП, составляющих доли ампера, были зафиксированы угловые погрешности в десятки электрических градусов и весьма значительные погрешности по модулю. В результате, например, вектор вторичного тока нулевой последовательности неповрежденной линии может попасть в область срабатывания и защита отключит эту линию. При возрастании токов погрешности сначала уменьшаются, а потом снова начинают расти.


3. Мгновенно действующие защиты в гораздо большей степени подвержены всевозможным «вредным воздействиям», чем защиты с выдержкой времени.

Рис. 1. Случай феррорезонанса после отключения ОЗЗ

Поэтому, если нет острой необходимости использовать защиты без выдержки времени, этого лучше избегать. Например, при перемежающихся дугах, у защиты с выдержкой времени и интегрированием рабочего сигнала гораздо больше шансов остаться селективной, чем у аналогичной без выдержки времени.
На рис.1 приведена полученная в процессе производственных испытаний осциллограмма напряжения нулевой последовательности на сборных шинах. Из нее видно, что после отключения замыкания на землю на шинах еще в течение нескольких десятых долей секунды присутствует напряжение нулевой последовательности, вызванное процессом феррорезонанса с участием измерительного трансформатора напряжения и емкостей оставшихся в работе линий. Вектор тока нулевой последовательности, протекающего при этом по оставшимся в работе (неповрежденным) линиям, может попасть в зону действия их защит, что приведет к их отключению. Частота токов и напряжений нулевой последовательности после отключения ОЗЗ резко снижается, но это не мешает отключению одной или нескольких неповрежденных линий.
Причина заключается в том, что частотные фильтры, устанавливаемые в большинстве защит от ОЗЗ, являются фильтрами-пробками высоких частот и легко пропускают на реагирующие органы субгармонические составляющие. Предотвратить описанные ложные срабатывания можно, если ввести соответствующую выдержку времени и использовать заземляющий резистор

ОПРЕДЕЛЕНИЕ НЕБАЛАНСОВ

Для расчета уставок направленных защит необходимо исследовать виды «небалансов», которые могут присутствовать в защите при отсутствии на защищаемом присоединении ОЗЗ и способны привести к срабатыванию чувствительных видов защит.
Под небалансом в защите от однофазных замыканий на землю будем понимать рабочий сигнал (в рассматриваемом случае – ток или напряжение нулевой последовательности), «ощущаемый» защитой при отсутствии ОЗЗ на защищаемом присоединении или искажающий её поведение при ОЗЗ на защищаемом присоединении. Одной из особенностей небалансов в защитах от ОЗЗ является то, что некоторые из них могут не только приводить к ложным или излишним срабатываниям защиты, но и способны влиять на её чувствительность при замыкании на защищаемом присоединении.
Следует отметить, что описанные ниже исследования не являются полностью завершенными. Некоторые процессы и сигналы ещё предстоит исследовать. Преждевременно было бы на основании описанных ниже материалов писать методики расчета уставок всех перечисленных разновидностей направленных токовых защит. Тем не менее, описанные ниже результаты представляют интерес для специалистов и могут послужить объектом обсуждения.
По причинам, вызвавшим появление небалансов в защите, их можно условно поделить на следующие три основные группы:

небалансы, связанные с различными процессами в сети, которые в свою очередь можно разделить на длительно присутствующие в сети и кратковременно появляющиеся и исчезающие;

небалансы, вызванные погрешностями измерительной аппаратуры, значения которых в меньшей или большей степени зависят от режима сети;

можно выделить отдельную группу экстремальных небалансов, значения которых иногда бывает сложно определить и от которых трудно или практически невозможно отстроиться по величине.

Некоторые разновидности небалансов могут существовать, не изменяясь, длительное время, другие появляются и исчезают, третьи меняют свою величину при изменении режима сети.

1. Небалансы, связанные с различными процессами в сети

Проведенный анализ позволил выявить следующие виды небалансов защиты от ОЗЗ, вызванные разного рода процессами в сети:

небалансы, вызванные феррорезонансными явлениями;

небалансы напряжений и токов нулевой последовательности, вызванные несимметрией фазных сопротивлений сети, имеющейся в нормальном режиме;

небаланс, связанный с несимметрией фазных ЭДС источника питания;

небаланс, вызванный влиянием сетей смежных напряжений;

небалансы, вызванные влиянием параллельных линий;

небаланс, вызванный несимметрией фазных нагрузок.

Своеобразным небалансом, вызванным внешними ОЗЗ, является емкостный ток защищаемого присоединения, который ощущает защита при ОЗЗ на соседних присоединениях. Однако от такого небаланса направленная защита отстроена «по углу», поэтому в приведенный выше перечень он не вошел.

2. Небалансы, вызванные погрешностями измерительной аппаратуры

небаланс по напряжению нулевой последовательности 3U0, вызванный неидентичностью характеристик фазных обмоток трансформаторов напряжения;

небаланс по току нулевой последовательности 3I0 трехтрансформаторного фильтра токов нулевой последовательности;

небаланс по току 3I0 кабельных трансформаторов тока нулевой последовательности;

небаланс, вызванный угловыми погрешностями измерительных трансформаторов (в первую очередь для защит, реагирующих на активный ток);

небалансы токов нулевой последовательности в защитах, установленных на пучках кабелей, вызванные нарушением контактных соединений.

3. Экстремальные небалансы

Экстремальные небалансы возникают, как правило, вследствие изменения режима сети. При этом одни из них могут быть связаны только с процессами в сети (например, небалансы, вызванные феррорезонансными явлениями), а другие вызваны погрешностями измерительной аппаратуры, значительно возрастающими с изменением режима сети (например, небаланс ФТНП при увеличении первичного тока; небаланс в защите, установленной на пучке кабелей, вызванный нарушением контактных соединений и возрастающий с увеличением тока нагрузки, например, в режиме самозапуска). К экстремальным небалансам можно отнести следующие:

Небалансы, вызванные феррорезонансными явлениями

Рис.1 иллюстрирует один из режимов, вызывающих значительные по величине сигналы в защите от ОЗЗ, связанный с феррорезонансными явлениями. Как отмечалось выше, для предотвращения ложных срабатываний защиты в этом режиме целесообразно использовать выдержку времени и устанавливать в сети заземляющие резисторы.
Появление феррорезонанса с участием измерительного трансформатора напряжения при возникновении в сети ОЗЗ, вызывает напряжение на выводах «разомкнутого треугольника», которое может достигать 200–300 В. В сети при этом протекают значительные по величине токи нулевой последовательности. Установка в сети заземляющего резистора необходимой величины исключает феррорезонанс, а вместе с ним и соответствующие небалансы.

Небалансы трехтрансформаторного ФТНП и кабельного ТТНП

От токов небаланса ФТНП и ТТНП нормального режима в большинстве случаев удается отстроиться увеличением тока срабатывания защиты. Однако в режиме самозапуска двигателей на приемной подстанции, и тем более в режиме междуфазного КЗ, ток небаланса может увеличиться настолько, что отстройка от него по величине приведет к недопустимому загрублению защиты, т.е. небаланс перейдет в разряд экстремальных. Значения соответствующих небалансов при использовании трехтрансформаторного фильтра токов нулевой последовательности могут быть рассчитаны.

Небаланс, вызванный неравенством суммарных продольных фазных сопротивлений

При нарушении контактных соединений фаз кабелей в пучке, в защите от ОЗЗ может появиться ток небаланса, вызванный неидентичностью характеристик намагничивания кабельных ТТНП, значение которого может быть весьма значительным. Для предотвращения неправильных действий защиты в рассматриваемом случае необходимо предусматривать соответствующее устройство, способное выявлять факт неравномерного распределения тока по кабелям и оповещать об этом обслуживающий персонал. В процессе одного из натурных экспериментов один из авторов настоящей статьи обнаружил ещё одну разновидность экстремального небаланса. Этот небаланс появился в цепи кабельной линии с изоляцией из сшитого полиэтилена после проведения опыта ОЗЗ на соседнем присоединении. Ток небаланса скачком увеличился во много раз в момент ОЗЗ, а потом в течение длительного времени (десятков минут) постепенно уменьшался. Подробные исследования проходящих при этом процессов выполнить не удалось. Изучение этого и других подобных видов небаланса – дело будущего.

МЕТОДИКА РАСЧЕТА НЕБАЛАНСОВ

1. Небаланс по напряжению нулевой последовательности, вызванный неидентичностью характеристик фазных обмоток трансформаторов напряжения

Для измерения напряжения 3U0 в сетях 6–10 кВ, как правило, используются трехфазные пятистержневые трансформаторы напряжения с двумя вторичными обмотками, одна из которых соединена по схеме звезды, а вторая – по схеме разомкнутого треугольника, реализующая фильтр напряжения нулевой последовательности.
В некоторых случаях для измерения напряжения в качестве ФННП используется группа из трех однофазных ТН.

     

Рис. 2. Появление тока небаланса при наличии угловой погрешности

3I0 – первичный емкостный ток в неповрежденной линии, отстающий от  напряжения 3U0 на угол в 90 электрических градусов.

При несимметрии параметров фильтров напряжения нулевой последовательности (трансформаторов напряжения) или его нагрузок, на выводах обмоток, соединенных в «разомкнутый треугольник», может появиться напряжение небаланса. Величину этого небаланса на разомкнутых зажимах нулевых обмоток, приведенную к первичной обмотке, можно оценить по заданной допустимой погрешности измерения фазных напряжений следующим образом:

, (1)

где UФ – фазное напряжение сети;
fи – погрешность ТН.

2. Небаланс по току нулевой последовательности трехтрансформаторного фильтра токов нулевой последовательности

В сетях с воздушными ЛЭП напряжением 35 кВ обычно не удается установить кабельные трансформаторы тока нулевой последовательности и в защите от ОЗЗ приходится использовать трехтрансформаторный фильтр токов нулевой последовательности. В этом случае, как правило, возникает довольно большой небаланс, который должен быть учтен в расчетах

.

3.Небаланс по току 3I0кабельных трансформаторов тока нулевой последовательности.

Рассматриваемая составляющая тока небаланса изменяется примерно пропорционально токам нагрузки. Величину небаланса при произвольной нагрузке Iнб.ТТНП приближенно можно определить следующим образом:

, (2)

где Iнб.300 – ток небаланса ТТНП при протекании по кабелю тока в 300 А;
Iнаг – реально протекающий ток (ампер).

4. Небаланс, вызванный угловыми погрешностями измерительных трансформаторов (в первую очередь для защит, реагирующих на активный ток)

Существует ещё одна составляющая токов небаланса, вызванная угловыми погрешностями измерительных трансформаторов и датчиков защиты. На рис. 2 приведена векторная диаграмма, иллюстрирующая рассматриваемый вопрос.
Предположим, что мы хотим построить направленную защиту от ОЗЗ, реагирующую на активный ток. В рассматриваемом случае рабочий сигнал в такой защите отсутствует, поскольку протекающий по защите ток – чисто емкостный. Однако если за счет угловых погрешностей измерительных трансформаторов тока, напряжения, а также соответствующих датчиков защиты вторичное значение тока нулевой последовательности 3I'0 окажется повернутым относительно первоначального положения на угол ά, как это показано на рис. 2, то появится соответствующий небаланс. При этом защита будет ощущать активный ток Iнб.угл, равный проекции вектора тока на вектор напряжения 3U0. При этом модуль тока небаланса Iнб.угл составит:

, (2)

где ά – суммарная угловая погрешность измерительных трансформаторов тока, напряжения и датчиков защиты.
Рассматриваемая составляющая тока небаланса появляется в защите в режиме внешнего ОЗЗ, и её необходимо учитывать при расчете тока срабатывания направленных токовых защит нулевой последовательности, реагирующих на активный ток.

Литература

1. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Направленные защиты. Характеристики, особенности применения // Новости ЭлектроТехники. – 2005. – № 6 (36).
2. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Направленные защиты. Влияние электрической дуги на направленные защиты // Новости ЭлектроТехники. – 2006. – № 1 (37).
3. Патент 2071624 (Российская Федерация). Устройство для централизованной направленной защиты от замыканий на землю / Шалин А.И. – Опубл. в Бюллетене № 1, 1997.
4. Патент 2157038 (Российская Федерация). Устройство для выявления присоединения с замыканием на землю в сети с изолированной нейтралью / Шалин А.И. – Опубл. в Бюллетене № 27, 2000 г.
5. Шалин А.И., Щеглов А.И. Централизованная защита от замыканий на землю в сетях 35 кВ // Известия академии наук РФ. Энергетика. – 2002. – № 2. – С.104–116.
6. Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей: Монография. – 4-е изд., перераб. и доп. – СПб.: ПЭИПК, 2003. – 350 с.
7. Руководящие указания по релейной защите. Выпуск 12. Токовая защита нулевой последовательности от замыканий на землю линий 110–500 кВ. Расчеты. – М.: Энергия, 1980. – 87 с.
8. Сирота И.М. Трансформаторы и фильтры напряжения и тока нулевой последовательности. – Киев: Наукова Думка, 1983. – 267 с.
9. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Случаи неправильных действий защиты // Новости Электротехники. – 2005. – № 2 (32).

10. Бухтояров В.Ф., Маврицын А.М. Защита от замыканий на землю электроустановок карьеров. – М.: Недра, 1986. – 184 с.
11. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Пример расчёта уставок // Новости ЭлектроТехники. – 2005. – № 4 (34).
12. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Особенности возникновения и приборы защиты // Новости ЭлектроТехники. – 2005. – № 1 (31).
13. Вайнштейн Р.А., Головко С.И. О гармоническом составе токов нулевой последовательности в сетях с компенсацией емкостного тока при замыкании на землю через перемежающуюся дугу // Изв. вузов. Сер. Энергетика. – 1978. – № 12. – С. 14–19.
14. Фальк Ю.П. Усовершенствование защиты от замыканий на землю в сетях 6–10 кВ на основе исследования вероятностных характеристик электрических величин при перемежающихся дуговых замыканиях: Дисс. на соискание степени к.т.н. Защищена 30.05.1987. – Новосибирск, 1987. – 208 с.
15. Шестакова В.В. Усовершенствование защиты от замыканий на землю в сетях с компенсацией емкостного тока и в сетях постоянного оперативного тока: Дисс. на соискание степени к.т.н. Защищена 13.06.2000. – Новосибирск, 2000. – 168 с.
16. Шуин В.А., Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6–10 кВ. – М.: НТФ Энергопрогресс, 2001. – 104 с.
17. Жежеленко И.В. Высшие гармоники в системах электроснабжения промпредприятий. – М.: Энергоатомиздат, 2004. – 259 с.Литература

18. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Расчет уставок ненаправленных токовых защит // Новости ЭлектроТехники. – 2005. – № 5 (35).

19. Кискачи В.В. Защита от однофазных замыканий на землю в сетях напряжением 6–10 кВ с различным режимом заземления нейтрали типа ЗЗН. – М.: ИПКгосслужбы, 2001. – 63 с.

20. Защита электрических сетей. Sepam 1000+ серии 40. Merlin Gerin. Руководство по установке и применению. Материалы фирмы Schneider Electric.

21. Вавин В.Н. Релейная защита блоков турбогенератор-трансформатор. – М.: Энергоатомиздат, 1982. – 256 с.

22. Шалин А.И., Политов Е.Н. Защита от замыканий на землю, реагирующая на сопротивление и проводимость цепи нулевой последовательности / Электроэнергетика. Сборник научных трудов. Часть 1. Новосибирск, НГТУ, 2002. – С. 72–82.

23. Шалин А.И., Политов Е.Н. Исследование характеристик дистанционных алгоритмов в защите от замыканий на землю / Избранные труды НГТУ – 2004. Новосибирск, изд-во НГТУ, 2004. – С. 4–17.

24. Jeff Roberts, Dr. Hector J. Altuve, and Dr. Daqing Hou. Review of ground fault protection methods for grounded, ungrounded and compensated distribution systems. Http/www Selcom. 10.11.2003.

25. Шалин А.И., Политов Е.Н. Анализ характеристик направленных защит от замыканий на землю в сетях 6–35 кВ / Энергетика: экология, надежность, безопасность. Материалы докладов восьмой всероссийской научно-технической конференции. – Томск: изд-во ТПУ, 2002. – Том 2. – С. 35–39.

26. Шалин А.И., Хабаров А.М. Защита от замыканий на землю в сетях 6–35 кВ, реагирующая на отношение тока в резисторе к току в линии / Материалы докладов девятой всероссийской научно-технической конференции «Энергетика: экология, надежность, безопасность». – Томск, изд-во Томского политехнического университета, 2003. – Том 1. – С. 117–120.

27. Jeff Roberts, Dr. Daqing Hou, Fernando Calero, Dr. Hector J. Altuve. New directional grounf-fault elements improve sensitivity in ungrounded and compensated networks. (, 10.01.02.)

28. Шалин А.И., Хабаров А.М., Кондранина Е.А. Поперечная дифференциальная направленная защита нулевой последовательности от замыканий на землю в сети 35 кВ / Материалы докладов одиннадцатой всероссийской научно-технической конференции «Энергетика: экология, надежность, безопасность». – Томск: изд-во ТПУ, 2005. – С.168–170.
29. Шалин А.И. Замыкания на землю в сетях 6–35 кВ. Достоинства и недостатки различных защит // Новости ЭлектроТехники. – 2005. – № 3 (33).
30. Андреев В.А. Релейная защита и автоматика систем электроснабжения. – М.: Высшая школа, 1991. – 496 с.

31. Александров А.М. Выбор уставок срабатывания защит асинхронных электродвигателей напряжением выше 1 кВ / Изд-во ПЭИк – СПб, 2001.
32. Челазнов А.А. Разработка технических регламентов и стандартов в области энергетики ОАО «Газпром» // Труды третьей всероссийской научно-технической конференции «Ограничение перенапряжений и режимы заземления нейтрали сетей 6–35 кВ» / Новосибирск, 2004. – С.12–25.Борухман В.А. Об эксплуатации селективных защит от замыканий на землю в сетях 6–10 кВ и мероприятиях по их совершенствованию // Энергетик. – 2000. – №1. – С. 20–22. Лихачёв Ф.А. Замыкания на землю в сетях с изолированной нейтралью и с компенсацией ёмкостных токов. – М.: Энергия, 1971. – 152 с.

33. Цапенко Е.Ф. Замыкания на землю в сетях 6–35 кВ. – М.: Энергоатомиздат, 1986. – 128 с. Шуцкий В.И.,Жидков В.О., Ильин Ю.Н. Защитное шунтирование однофазных повреждений электроустановок. – М.: Энергоатомиздат, 1986. – 151 с. Нестеров С.В.,

34. Щеглов А.И., Целебровский Ю.В. Анализ осциллограмм токов и напряжений при однофазных дуговых замыканиях в сети 10 кВ с резистивным сопротивлением в нейтрали // Ограничение перенапряжений и режимы заземления нейтрали сетей 6–35 кВ: Труды второй Всероссийской научно-технической конференции. – Новосибирск, 2002. – 200 с. 35. Вайнштейн Р.А., Карбышев А.Ф., Фальк Ю.П. Влияние заземляющего резистора на работу защиты от замыканий на землю при перемежающихся замыканиях // Быстродействующая релейная защита и противоаварийная автоматика электрических систем. – Новосибирск: Изд-во НЗТИ, 1987. – С. 79–82.

36. Вайнштейн Р.А., Карбышев А.Ф. Обоснование выбора тока срабатывания защиты от замыканий на землю в сети с изолированной и заземлённой через резистор нейтралью // Управление режимами электроэнергетических систем. – Новосибирск: Изд-во НГГУ, 1994. – С.105–110.

37. О повышении надежности сетей 6 кВ собственных нужд энергоблоков АЭС / Циркуляр Ц-01-97(Э). – М.: Росэнергоатом, 1997.

38. Федосеев А.М. Релейная защита электрических систем. – М.: Энергия, 1976. – 560 с.
39. Корогодский В.И., Кужеков С.Л., Паперно Л.Б. Релейная защита электродвигателей напряжением выше 1 кВ. – М.: Энергоатомиздат, 1987. – 248 с

40. Лурье А.И., Панибратец А.Н., Зенова В.П. и др. Серия нейтралеров типа ФМЗО для работы с управляемыми подмагничиванием дугогасящими реакторами серии РУОМ в распределительных сетях с изолированной нейтралью // Электротехника. – 2003. – №1.
41. Электротехнический справочник. Том 3. Производство, передача и распределение электрической энергии/ Под общей редакцией профессоров МЭИ В.Г. Герасимова и др. (гл. редактор А.И. Попов) – 8-е изд. – М.: Издательство МЭИ, 2002. – 964 с.


Схемы замещения трансформаторов при расчетах

Похожие записи:



Смотреть как сделать прическу дома

Манишка розовая спицами схема

Как сделать полный сброс на люмия 800